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Abstract

This paper is devoted to studying the symmetric 2-adic complexity of sequences
with optimal autocorrelation magnitude and period 8q, where q is a prime satisfying
q ≡ 5 (mod 8). These sequences were constructed by interleaving technique from
Ding-Helleseth-Martinsen sequences and almost perfect binary sequences. They
were presented by Krengel and Ivanov in 2016 and have been proved to have high
linear complexity. Our result shows that they also have high symmetric 2-adic
complexity.

1 Introduction

Binary sequences with low autocorrelation, large linear complexity and 2-adic complexity,
are widely used in many areas of communication and cryptography. Interleaving technique
was introduced by Gong [6] and has become an important method to construct binary
sequences with good pseudo-random properties listed above. For example, Tang and Gong
presented three classes of sequences with optimal autocorrelation value/magnitude from
Legendre sequences, twin-prime sequences and a generalized GMW sequence, respectively
[19]. Soon afterwards, Tang and Ding gave a construction of optimal binary sequences
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which generalized the constructions [18] introduced by Tang and Gong. Recently, from
Ding-Helleseth-Lam sequences [1], Su et al. presented several sequences with optimal
autocorrelation magnitude by interleaving technique [17], see also [14]. In fact, the famous
Ding-Helleseth-Martinsen sequences [2] have also been showed to be with an interleaved
structure [25]. What’s encouraging is that all of the above mentioned sequences have been
proved to have large linear complexity and 2-adic complexity [13, 23, 5, 4, 16, 24, 25, 26].

It should be pointed out that all of the above mentioned sequences are interleaved by
4-column except that Ding-Helleseth-Martinsen sequences are interleaved by 2-column.
Specifically, the sequences interleaved by 4-column are of the form s = I(s1, s2, s3, s4), i.e.,
s is obtained by concatenating the successive rows of the matrix I(s1, s2, s3, s4), where
each column is a periodic sequence si, 1 ≤ i ≤ 4, and the sequences interleaved by 2-
column are similar to that by 4-column except for the number of columns. Not only that,
the base sequences si, 1 ≤ i ≤ 4 which are used to construct the above sequences also
belong to the same type which means that all of them either have ideal autocorrelation
or one is a modified version of another.

However, because of the diversity of interleaving methods, it seems that new sequences
emerge in endlessly. Just recently, Krengel and Ivanov presented a new construction in
which two different types of sequences are used as the base sequences of an interleaved
structure [11], i.e., they employed two classes of optimal sequences and an almost perfect
sequence to produce two families of sequences with optimal autocorrelation. In quick
succession, Edemskiy and Minin proved that these sequences have high linear complexity
[3].

Comparing with the linear complexity, the 2-adic complexity of binary sequences with
small autocorrelation has not been fully researched. The 2-adic complexity of the binary
sequences with ideal autocorrelation and some other sequences with good autocorrelation
were studied in [22, 21, 15, 16] (see also references here). Very recently, the 2-adic com-
plexity of Ding-Helleseth-Martinsen sequence with period 2p was determined in [26] by
using ”Gauss periods” and ”Gauss sums” on finite field Fq valued in the ring Z22q−1. With
the help of this interesting approach, in this paper we will study the symmetric 2-adic
complexity of one family of binary sequences suggested by Krengel and Ivanov which is
obtained from Ding-Helleseth-Martinsen (DHM) sequences and an almost perfect binary
sequences.

The rest of the paper is organized as follows. Some preliminaries are introduced in
Section 2. In Section 3, we prove our main result.

2 Preliminaries

2.1 Autocorrelation and symmetric 2-adic complexity of sequences

Let s = (s0, s1, . . . , sN) be a binary sequence of period N . The autocorrelation of s at
shift τ is defined by

As(τ) =
N−1∑
i=0

(−1)si−si+τ .
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A binary sequence of length N = 4N1 is called to have optimal autocorrelation mag-
nitude when its out-of-phase autocorrelation coefficients belong to the set {0,±4}.

Klapper and Goresky introduced a new feedback architecture for shift register gener-
ation of pseudorandom binary sequences called feedback with carry shift register. The
length of the shortest feedback with carry shift register is called 2-adic complexity of
sequences. The term was initially used by Klapper who showed this indicator to be
important pseudo-randoman measure [9, 10].

Let S(x) =
∑N−1

i=0 six
i ∈ Z[x]. According to [9] the 2-adic complexity of the sequence

s can be defined as

Φ(s) =
⌊
log2

(
2N − 1

gcd (S(2), 2N − 1)
+ 1

)⌋
,

where bxc is the greatest integer that is less than or equal to x. Due to the rational
approximation algorithm, 2-adic complexity has become an important security criteria.

Further, Hu and Feng [7] proposed a new measure Φ̄(s) = min (Φ(s),Φ(s̃)) called
symmetric 2-adic complexity, where s̃ = (sN−1, sN−2, . . . , s0) is the reciprocal sequence of
s. They also showed that symmetric 2-adic complexity is better than 2-adic complexity
in measuring the security of a binary periodic sequence.

2.2 The definition of sequences

Let q be a prime of the form q ≡ 1(mod 4), and let θ be a primitive root modulo q. By
definition, put

D0 = {θ4s mod q; s = 1, ..., (q − 1)/4}

and Dn = θnD0, n = 1, 2, 3. Then Dk are cyclotomic classes of order four modulo q.
The residue classes ring Z2q

∼= Z2×Zq relative to isomorphism φ(a) = (a mod 2, a mod q).
Ding et al. [2] considered sequences defined as

zi =

{
1, if i mod q ∈ C;
0, if i mod q 6∈ C, (1)

for C = φ−1 ({0} × (Dk ∪Dj) ∪ {1} × (Dl ∪Dj)) where k, j, and l are pairwise distinct
integers between 0 and 3 [2]. According to [2], the sequence z has an optimal autocor-
relation value (its out-of-phase autocorrelation coefficients belong to the set {±2}) when
q ≡ 5(mod 8) and

1. (k, j, l) = (1, 0, 3); (0, 1, 2) for q = 1 + 4b2 and b is odd;
2. (k, j, l) = (0, 1, 3); (0, 2, 1) for q = a2+4, b = 1. Here a, b are integers, a ≡ 1( mod 4)

and a sign of b is defined by formulae for cyclotomic numbers.
A binary sequence is called almost perfect if all its out-of-phase autocorrelation values

are 0 with one exception. A denotation of almost perfect binary (APB) sequences was
introduced by Wolfmann [20]. There is also another definition of almost perfect sequences.
The sequence is called almost perfect if all of its off-peak autocorrelation coefficients are
as small as theoretically possible, with only one exception [8].
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Let p be an odd prime and m ≥ 1 be a positive integer. APB sequences of a length
2N = 2(pm + 1) were studied in [20, 12, 8] (see also references here). Here we use a
representation of APB sequences from [11].

Denote by α the primitive element of the finite field GF (p2m) and β = αN . It is
easy to prove that β ∈ GF (pm) and β is a primitive element of GF (pm). Then the APB
sequence x with a period 2(pm + 1) can be defined as

xi =


0, if Tr(αi) 6= 0 and indβTr(αi) ≡ 0 (mod 2),
1, if Tr(αi) 6= 0 and indβTr(αi) ≡ 1 (mod 2),

1(0), if Tr(αi) = 0,

where indβz is the discrete logarithm z to the base β, and Tr (x) = x + xp
m

+ · · · +
xp

m(pm−1), x ∈ GF (p2m) is the trace function from GF (p2m) in GF (pm). It is clear by
definition that xi + xi+N = 1 for i = 1, 2, . . . , N − 1 since Tr (βα) = βTr (α). Here, we
can set the values x0, xN to 0 or 1. We take x0 = xN = 1 to obtain the balanced sequences
below.

As noted in [11] there exist p,m and q such that pm + 1 = 2q, for example 32 + 1 =
2 · 5, 52 + 1 = 2 · 13 and so on. For these values p,m, q we form the sequence y = z · z of
length 2N = 2(pm + 1) = 4q using a concatenation z.

Let interleaved sequence w be defined by

wi =

{
yk, if i = 2k,
xk, if i = 2k + 1,

k = 0, 1, . . . , 2N − 1. (2)

Thus, by the definition 8q is the period of w. By [11] w has optimal autocorrelation
magnitude. But for our purpose we need to consider the autocorrelation function of this
sequence in more detail than it was done in [11]. A proof of the following lemma can be
easily carried out by computation Aw(τ), which is omitted here.

Lemma 1. Let w be the binary sequence with period 8q defined by (2) and w̃ = w8q−1, . . . , w1, w0

be the reciprocal sequence of w. Then for τ = 1, 2, . . . , 8q − 1 we have

Aw(τ) =


Ay(k), if τ = 2k, k 6= 2q,

4, if τ = 4q,

4y−k + 4yk+1 − 4, if τ = 2k + 1,

Furthermore, since Aw̃(τ) = Aw(−τ) and −τ = 2(−m− 1) + 1 for τ = 2m+ 1, we have

Aw̃(τ) =


Ay(−k), if τ = 2k, k 6= 2q,

4, if τ = 4q,

4yk+1 + 4y−k − 4, if τ = 2k + 1.

Remark 2. Because of the relationship between w and w̃ listed in Lemma 1, in the later
proof we always can get the corresponding properties of w̃ when we get some properties
of w. Due to the limitation of space, we will only give the relevant proof for w.

Remark 3. In [11], Krengel and Ivanov used DHM sequences defined only for C, but
Lemma 1 is true also when we use DHM for C(0) = C ∪ {0}(see [2]).

Sequences and Their Applications (SETA) 2020 4



The symmetric 2-adic complexity of sequences with optimal autocorrelation magnitude

3 2-adic complexity of sequences

Let w be a binary sequence of period 8q defined in (2). For study of 2-adic complexity of
our sequence we need to consider gcd (Sw(2), 28q − 1), where Sw(X) =

∑8q−1
i=0 wiX

i ∈ Z[X]
and Sw̃(X) =

∑8q−1
i=0 w̃iX

i ∈ Z[X]. If d is a prime divisor of gcd (Sw(2), 28q − 1) then d
divides gcd (Sw(2), 24q − 1) or gcd (Sw(2), 24q + 1). Our study includes three steps. First,
we find gcd (Sw(2), 24q + 1).

Proposition 4. With notations as above, we have

(i) gcd (Sw(2), 24q + 1) = 1;

(ii) gcd (Sw̃(2), 24q + 1) = 1.

Proof. Let Tw(x) =
∑8q−1

i=0 (−1)wiX i ∈ Z[X]. By [16] we have

−2Sw(X)Tw(X−1) ≡ 8q +

8q−1∑
τ=1

Aw(τ)Xτ − T (X−1)

8q−1∑
i=0

X i (mod X8q − 1).

From the latest congruence we obtain

−2Sw(2)Tw(2−1) ≡ 8q +

8q−1∑
τ=1

Aw(τ)2τ (mod 28q − 1).

Since y is obtained by the concatenation of z, it follows that yk = yk+2q = zk and
Ay(k) = Ay(k + 2q) = 2Az(k) for k = 0, 1, . . . , 2q − 1. Hence by Lemma 1 we see that

− 2Sw(2)Tw(2−1) ≡ 8q − 8(28q − 1)/3 + 4 · 24q + 2(1 + 24q)

2q−1∑
k=1

Az(k)22k

+ 8(1 + 24q)

2q−1∑
k=0

(z−k + zk+1)22k (mod 28q − 1). (3)

Let r be an odd prime divisor of Sw(2) and 24q + 1. Then by (3) r divides 8q − 4.
Since 24q ≡ −1 (mod r), it follows that 28q ≡ 1 (mod r) and the order 2 modulo r equals
8 or 8q. In the second case 8q divides r − 1 and we obtain the contradiction. If order 2
modulo r is equal to 8 then r divides 255, i.e., r = 17. Further, since 8q − 4 = 4pm it
follows that p = 17. In this case pm ≡ 1 (mod 16) and q ≡ 1 (mod 8). We again have
the contradiction. Thus, gcd (Sw(2), 24q + 1) = 1.

Immediately, we can get the following corollary from the proof of Proposition 4.

Corollary 5. With notations as above. We have that

−2Sw(2)Tw(2−1) ≡ 8q−16(24q−1)/3+4

2q−1∑
t=1

Az(t)2
2t+4+16

2q−1∑
t=0

(z−t+zt+1)22t (mod 24q−1),

−2Sw̃(2)Tw̃(2−1) ≡ 8q−16(24q−1)/3+4

2q−1∑
t=1

Az(−t)22t+4+16

2q−1∑
t=0

(z−t+zt+1)22t (mod 24q−1).
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3.1 Subsidiary lemmas

Now we make some preparations to finish the proof. The generating polynomial of fol-
lowing auxiliary sequence will be heavily used sequel. Let z be a binary sequence defined
by (1) for (k+2, j+2, l+2) (mod 4). Put, by definition, Sz̄(x) =

∑2q−1
i=0 z̄ix

i. Since q ≡ 5
(mod 8), it follows that −1 ∈ D2 and

∑2q−1
t=0 z−t2

2t = Sz̄(4). Further,

16

2q−1∑
t=0

zt+122t = 4

2q−1∑
t=0

zt+122(t+1) = 4Sz(4)− 4z0 + 4z2q2
4q.

Thus,

16

2q−1∑
t=0

(z−t + zt+1)22t ≡ 16Sz̄(4) + 4Sz(4) (mod 24q − 1).

Lemma 6. Let Sw(X) and Sw̃(X) be the generation polynomials of w and w̃ respectively.
Then we have the following statements:

(i) Sw(2) ≡ 0 (mod 3) and Sw(2) 6≡ 0 (mod 9) (The conclusion also holds for Sw̃(2));

(ii) Let d be a divisor of 24q− 1. If d divides Sw(2) and d 6= 3 then Sz(4) ≡ −1 (mod d)
and vice versa (The conclusion still holds if we substitute Sw̃(2) for Sw(2) and Sz̄(4)
for Sz(4));

(iii) Sw(2) 6≡ 0 (mod 5) (The conclusion also holds for Sw̃(2)).

Proof. By definition S(2) = Sy(4) + 2Sx(4) = (1 + 42q)Sz(4) + 2Sx(4), where Sy(4) =∑4q−1
i=0 yi4

i and Sx(4) =
∑4q−1

i=0 xi4
i. Further, Sx(4) =

∑2q−1
i=0 xi4

i +
∑2q−1

i=0 xi+2q4
i+2q.

Since xi+2q = 1− xi for i 6= 0, it follows that

Sx(4) = 42q(42q − 1)/3 + 42q + (1− 42q)

2q−1∑
i=0

xi4
i.

Thus,

Sw(2) = (1 + 42q)Sz(4) + 2

(
42q(42q − 1)/3 + 42q + (1− 42q)

2q−1∑
i=0

xi4
i

)
. (4)

Hence, Sw(2) ≡ 2wt(Sz(x)) + 2(2q + 1) (mod 3), where wt(Sz(x)) is a weight of Sz(x).
Since wt(Sz(x)) = q − 1, it follows that Sw(2) ≡ 0 (mod 3). Further, 28q − 1 = (2q −
1)(2q + 1)(22q + 1)(24q + 1) and 3 divides only 2q + 1. It is clear that 9 does not divide
2q + 1 for q ≡ 5 (mod 8). So, we obtain the first statement of this lemma.

(ii) By (4) we see that Sw(2) ≡ 2Sz(4) + 2 (mod d). This proves (ii).
(iii) The third statement of this lemma follows from (ii).

Then we can directly get the following corollary.
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Corollary 7. If d divides gcd(24q− 1, Sw(2)) with d 6= 3 and r divides gcd(24q− 1, Sw̃(2))
with r 6= 3 then

−2Sw(2)Tw(2−1) ≡ 8q + 4

2q−1∑
t=1

Az(t)2
2t + 16Sz̄(4) (mod d). (5)

−2Sw̃(2)Tw̃(2−1) ≡ 8q + 4

2q−1∑
t=1

Az(−t)22t − 12 + 4Sz(4) (mod r). (6)

By Proposition 4 and Lemmas 6 it is sufficient to study gcd ((16q − 1)/15, Sw(2)) and
gcd ((16q − 1)/15, Sw̃(2)) to complete the proof of Theorem 10.

Further, we will use generalized ”Gauss periods” and ”Gauss sums” presented in [26].
Only here, we will employ them with values from Z24q−1 and not from Z22q−1 as it was
done in [26].

Let ζt =
∑

i∈Dt 16i, t = 0, 1, 2, 3. If t = φ−1(a, b) then t ≡ qa + (q + 1)b (mod 2q).

Thus,
∑

t∈{0}×Di 4t ≡
∑

b∈Di 4(q+1)b (mod 42q−1). Let e = indg2 (mod 4). For any b ∈ Di

there to exist c ∈ Di−e such that b ≡ 2c (mod q). Then (q + 1)b ≡ 2(q + 1)c (mod 2q)
and

∑
t∈{0}×Di 4t ≡

∑
c∈Di−e 16(q+1)c ≡

∑
c∈Di−e 16c (mod 42q − 1). Similarly, we get that∑

t∈{1}×Di 22t ≡ 4q
∑

b∈Di−e 16c (mod 42q − 1).
Thus we see that∑

t∈{0}×Di

22t ≡ ζi−e (mod 42q − 1) and
∑

t∈{1}×Di

22t ≡ 4qζi−e (mod 42q − 1), (7)

and ζ0 + ζ1 + ζ2 + ζ3 = (16q − 1)/15− 1.
Let ωi =

∑
t∈Di∪Di+2

16t, i = 0, 1. Then ω0 = ζ0 + ζ2, ω1 = ζ1 + ζ3 and ω0 + ω1 ≡ −1

(mod (16q − 1)/15).
Denote by χ a quadratic character of Fq and put by definition H = ω0 − ω1 =∑
i∈F∗

q
16iχ(i). Then as in [26] we have the following statement.

Lemma 8. (i) H2 ≡ q − (16q − 1)/15 (mod 16q − 1);

(ii) (2wi + 1)2 ≡ q (mod (16q − 1)/15) for i = 0, 1.

Proof. (i) The first statement we can obtain in the same way as in [26]
(ii) From (i) we obtain H2 ≡ q (mod (16q − 1)/15) and 2wi + 1 = ±H (mod (16q −

1)/15).

Remark 9. Of course, we can study S(4) in the same way that S(2) is investigated in [26].
But we will obtain our results in a more simple way.

3.2 Main result

Our main result is the following statement.

Theorem 10. Let w be a binary sequence with period 8q defined by (2). Then we have
Φ̄(w) = 8q − 2.

Sequences and Their Applications (SETA) 2020 7
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To prove our theorem we will show gcd (Sw(2), 28q − 1) = gcd (Sw̃(2), 28q − 1) = 3.
Then

Φ(w) = Φ(w̃) =
⌊
log2

(
28q − 1

3
+ 1

)⌋
= 8q − 2.

According to Lemma 6, we see that 3 divides gcd (16q − 1, Sw(2)) and
gcd (16q − 1, Sw̃(2)), also 5 does not divide gcd (16q − 1, Sw(2)) and gcd (16q − 1, Sw̃(2)).
In this subsection, let always d be a prime divisor of gcd (16q − 1, S(2)), d > 5 and r be
a prime divisor of gcd (16q − 1, Sw̃(2)), r > 5. Further, we need to consider a few cases.

Lemma 11. Let z be a sequence defined by (1) for q = 1 + 4b2, (k, j, l) = (1, 0, 3); (0, 1, 2)
and let w be a binary sequence of period 8q defined by (2). Then gcd (16q − 1, S(2))) = 3
and gcd (16q − 1, Sw̃(2))) = 3.

Proof. First, we study the gcd (16q − 1, Sw(2)). For (k, j, l) = (1, 0, 3) according to [2] the
autocorrelation of z is defined as

Az(τ) =

{
−2, if τ mod 2 = 0, τ mod q 6= 0 or τ mod 2 = 1, τ mod q ∈ D1 ∪D3,

2, if τ mod 2 = 1, τ mod q = 0 or τ mod 2 = 1, τ mod q ∈ D0 ∪D2.

Then by (7) we obtain that

2q−1∑
t=1

Az(t)2
2t ≡ −2

(
3∑
i=0

ζi + 4q(ζ1−e + ζ3−e)

)
+ 2 · 4q + 2 · 4q(ζ0−e + ζ2−e) (mod 42q − 1).

Note that e = 1 or 3. Then by Lemma 6, we get

4

2q−1∑
t=1

Az(t)2
2t ≡ 8− 8 · 4qH + 8 · 4q (mod d).

We see that (k + 2, j + 2, l + 2) (mod 4) = (3, 2, 1) for (k, j, l) = (1, 0, 3). Thus,

Sz(4) + Sz̄(4) =

2q−1∑
i=1,i 6=q

4i = (42q − 1)/3− 1− 4q.

Again by Lemma 6 we obtain Sz̄(4) ≡ −4q (mod d). So, by (5) we have

− 2Sw(2)Tw(2−1) ≡ 8q + 8− 8 · 4qH − 8 · 4q (mod d). (8)

Suppose d is a prime divisor of 4q − 1; then by (8) we have q ≡ H (mod d) and
by Lemma 8.(i) q2 ≡ q (mod d). Thus, q ≡ 1 (mod d). Here q divides d − 1, this is
impossible.

Suppose d divides 4q + 1; then by (8) we have q + 2 ≡ −H (mod d) or by Lemma 8
q2 + 3q + 4 ≡ 0 (mod d). Since d is a prime, it follows that d = 1 + 2nq, n ∈ N. Then

0 ≡ 2n(q2 + 3q + 4) ≡ −q − 3 + 8n (mod d)

Sequences and Their Applications (SETA) 2020 8
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and −q − 3 + 8n is even. Thus, −q − 3 + 8n = 2m(1 + 2nq) for m ∈ Z. It is clear that
m = 0. Hence 8n = q + 3 and d = 1 + q(q + 3)/4.

Here 22q ≡ −1 (mod d) and 24q ≡ 1 (mod d). Thus, the order of 2 modulo d equals
4 or 4q. In the first case d = 5. This is impossible by Lemma 6. Thus 4q divides d − 1
or 4 divides (q + 3)/4. By condition q = 1 + 4b2 and b is odd, then we have that q ≡ 5
(mod 32) and (q + 3)/4 ≡ 2 (mod 8). We obtain the contradiction.

In this case, using (6) for w̃ we similarly get that

−2Sw̃(2)Tw̃(2−1) ≡ 8q − 4− 8 · 4qH + 4 · 4q (mod r).

Thus, we can get the desired conclusion for w̃ in the same way as before.
Now, let (k, j, l) = (0, 1, 2). In this case, the autocorrelation of z is defined as [2]:

Az(τ) =

{
−2, if τ mod 2 = 0, τ mod q 6= 0 or τ mod 2 = 1, τ mod q ∈ D0 ∪D2,

2, if τ mod 2 = 1, τ mod q = 0 or τ mod 2 = 1, τ mod q ∈ D1 ∪D3.

Thus, by (7) we obtain

4

2q−1∑
t=1

Az(t)2
2t ≡ 8 + 8 · 4qH + 8 · 4q (mod d).

We see that (k+ 2, j+ 2, l+ 2) (mod 4) = (2, 3, 0) for (k, j, l) = (0, 1, 2). Hence, as earlier
Sz̄(4) ≡ −4q (mod d). So, by (5) we have

−2Sw(2)Tw(2−1) ≡ 8q + 8− 8 · 4qH − 8 · 4q (mod d).

Then we can get the result for (k, j, l) = (0, 1, 2) as above. Thus, we derived the
gcd (16q − 1, Sw(2)) = 3.

Lemma 12. Let z be a sequence defined by (1) for p = a2 + 4, b = 1, (k, j, l) =
(0, 1, 3), (0, 2, 1) and let w be a binary sequence of period 8q defined by (2). Then
gcd (16q − 1, S(2)) = 3 and gcd (16q − 1, Sw̃(2)) = 3.

Proof. For p = a2 + 4 and (k, j, l) = (0, 1, 3), through similar discussion to that in the
proof of Lemma 11, we can get the following series of results:

2q−1∑
t=1

Az(t)2
2t ≡ 2− 2 · 4qH + 2 · 4q (mod d),

Sz(4) + Sz̄(4) ≡ (42q − 1)/15− 1 + 2 · 4qω0 (mod 42q − 1),

Sz̄(4) ≡ 2 · 4qω0 (mod d),

−2Sw(2)Tw(2−1) ≡ 8q + 8 + 8 · 4q + 4q(24ω0 + 8ω1) (mod d). (9)

Suppose d is a prime divisor of 4q − 1; then by (9) we have q ≡ −(2ω0 + 1) (mod d) and
by Lemma 8. (iii) q2 ≡ q (mod d). Hence, q ≡ 1 (mod d). This is impossible.

Sequences and Their Applications (SETA) 2020 9
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Suppose d is a prime divisor of 4q + 1; then by (9) we have q + 2 ≡ 2ω0 + 1 (mod d)
and by Lemma 8 q2 + 3q + 4 ≡ 0 (mod d). As earlier we see that this is impossible.

Similarly, let (k, j, l) = (0, 2, 1). We get the following series results:

2q−1∑
t=1

Az(t)2
2t ≡ 2 + 2 · 4q + 2 · 4qH (mod r),

Sz(4) + Sz̄(4) ≡ 2ω1 + 4(42q − 1)/15− 4q (mod 42q − 1),

Sz̄(4) ≡ 1 + 2ω1 − 4q (mod d),

−2Sw(2)Tw(2−1) ≡ 8q + 24 + 8 · 4qH − 8 · 4q + 32ω1 (mod d).

In this case, we can get the desired conclusion in the same way as before.
So we complete the proof.

Thus, Theorem 10 follows from Proposition 4 and Lemmas 11, 12.

Example 13. 1. Let z be defined by (1) for C, (k, j, l) = (0, 1, 3) and q = 5. Then
z = 0, 0, 0, 1, 0, 0, 1, 1, 1, 0 and z̃ = 0, 1, 1, 1, 0, 0, 1, 0, 0, 0 per period (here g = 3). We take
APB sequences x = 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0 [11]. Then
w = 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0

and
w̃ = 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0
per period. In this case, gcd (28q − 1, Sw(2)) = 3 and gcd (28q − 1, Sw̃(2)) = 3. Then
Φ̄(w) = 38.

Remark 14. We can study in the same way the symmetric 2-adic complexity of sequences
with the optimal autocorrelation magnitude when these sequences are obtained from
almost perfect binary sequences and Ding-Helleseth-Martinsen sequences for C(0) = C ∪
{0}.
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