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Abstract

Among the six known classes of APN power functions on F2n , the Dobbertin
function is the only one whose Walsh spectrum and, in particular, nonlinearity, are
unknown. This problem has already been open for 20 years without any progress
since the seminal work of Canteaut, Charpin and Dobbertin from 2000, in which
they proved that all Walsh coefficients of the Dobbertin function over F25m are
divisible by 22m.

In this paper, we present a conjecture fully describing the Walsh spectrum of
the Dobbertin function. We also show that the Dobbertin function can be repre-
sented as the composition of a cubic power function and the inverse of a quadratic
power function; more precisely, the Dobbertin exponent over F25m has the form
22m+1 22m+2m+1

2m+1 . This representation is optimal in the sense that it is impossible to
represent the Dobbertin function as the composition of a quadratic power map with
the inverse of another quadratic power function.

1 Introduction

Differential cryptanalysis, introduced by Biham and Shamir [2], and linear cryptanalysis,
introduced by Matsui [17], are two of the most powerful attacks against block ciphers
known to date. The notions of almost perfect nonlinear (APN) and almost bent (AB)
functions were introduced by Nyberg [18] and by Chabaud and Vaudenay [8], respectively,
to designate the classes of functions providing optimal resistance to these attacks. Since
then, much work has been done on these two topics.

Let n be a positive integer. An (n, n)-function, or vectorial Boolean function, is any
mapping from the finite field F2n of 2n elements to itself. For any positive integers n and
δ, an (n, n)-function F is called differentially δ-uniform if, for every nonzero a and every
b in F2n , the equation F (x) + F (x+ a) = b admits at most δ solutions.
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Given a positive integer i, its 2-weight is the number of ones in its binary notation.
More precisely, if i =

∑K
j=0 cj2

j for some positive integer K and for cj ∈ {0, 1} for

0 ≤ j ≤ K, then the 2-weight is defined as wt(i) =
∑K

j=0 cj. The largest 2-weight of any
exponent i in the univariate representation of an (n, n)-function F with ai 6= 0 is called
the algebraic degree of F . A function of algebraic degree 1, resp, 2, resp. 3 is called affine,
resp. quadratic, resp. cubic. An affine function F with F (0) = 0 is called linear.

Vectorial Boolean functions used as S-boxes in block ciphers must have low differential
uniformity in order to provide high resistance to differential cryptanalysis. We note that
over a finite field of even characteristic, the equation F (x) + F (x + a) = b always has
an even number of solutions for any a, b ∈ F2n . In this sense, differentially 2-uniform
functions, called almost perfect nonlinear (APN) functions, are optimal. The notion of an
APN function is closely connected to that of an almost bent (AB) function, which can be
described in terms of the so-called Walsh transform. Let tr(x) = x+x2 +x2

2
+ · · ·+x2

n−1

denote the absolute trace function from F2n onto F2. The Walsh transform of an (n, n)-
function F is the integer valued function WF : F2

2n → Z defined by

WF (a, b) =
∑
x∈F2n

(−1)tr(bF (x)+ax), a, b ∈ F2n .

The set WF = {WF (a, b) : a, b ∈ F2n , b 6= 0} is called the Walsh spectrum of F and the
set {|WF (a, b)| : a, b ∈ F2n , b 6= 0} is called the extended Walsh spectrum of F . If the

Walsh spectrum of F equals {0,±2
n+1
2 }, then F is called almost bent (AB). AB functions

exist only for odd n. Besides, every AB function is APN [8], and in the case of n odd, a
quadratic (n, n)-function is APN if and only if it is AB [7].

The nonlinearity of a function measures its resistance to linear cryptanalysis, and can
be expressed via the Walsh transform as NL(F ) = 2n−1 − 1

2
max

a∈F∗2n ,b∈F2n
|WF (a, b)|. AB

functions have the highest possible nonlinearity, and thus provide optimum resistance
to linear attacks [8]. Comprehensive surveys on APN and AB functions can be found
in [3, 6].

Table 1 gives all known values of exponents d (up to multiplication by a power of 2
modulo 2n − 1, and up to taking the inverse when d is coprime with 2n − 1) such that
the function xd over F2n is APN. It is conjectured by Hans Dobbertin that there exists
(up to equivalence) no other power APN function [12]. The conjecture has been verified
computationally for n ≤ 24 by Anne Canteaut as stated in [12], and later by Edel for
n ≤ 34 and n = 36, 38, 40, 42 (unpublished).

Sequences and Their Applications (SETA) 2020 2



Table 1

Known APN power functions xd on F2n

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, n) = 1 [13, 18]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [15]

Welch 2t + 3 n = 2t + 1 [10]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 [11]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [1, 18]

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m [12]

For n odd the Gold, Kasami, Welch and Niho APN functions from Table 1 are also
AB (for the proofs of the AB property, see [4, 5, 13, 14, 15, 18]). In the case of n even,

the Gold and the Kasami functions have the same Walsh spectrum: {0,±2
n
2 ,±2

n+2
2 }.

The Walsh transform of the inverse function takes any value divisible by 4 in the interval
[1− 2

n
2
+1, . . . , 1 + 2

n
2
+1] [16]. When n is even, the inverse function x2

n−2 is a differentially
4-uniform permutation [18]; its instance for n = 8 is used as a major component of the
AES S-box [9].

The Dobbertin function is the only APN power function whose nonlinearity and Walsh
coefficients remain unknown. In 2000, it was proven that it is not AB and that all its
Walsh coefficients are divisible by 2

2n
5 , but not all of them are divisible by 2

2n
5
+1 [5].

During the last twenty years, no more progress has been made. In this work, we present
two observations which may stimulate future advances in the study of this problem. In the
first one, we show that the Dobbertin exponent can be represented as 22m+2m+1

2m+1
, 23m+22m+1

22m+1
,

23m+2m+1
23m+1

and 22m+2m+1
24m+1

, that is, as fractions of cubic and quadratic exponents. We also
show that such a representation is optimal, in the sense that it is impossible to represent
the exponent of the Dobbertin function as a fraction of two quadratic exponents. The
second observation is a conjecture giving a full description of the Walsh spectrum of the
Dobbertin function.

2 On the exponent of the Dobbertin function

It is known that the exponent of the Kasami function in the case n odd can be represented
as 22i − 2i + 1 = 23i+1

2i+1
, that is, the function can be expressed as the composition of a

quadratic power function with the inverse of another quadratic power function. As shown
in [7], this property gives a simple explanation of the AB-ness of the Kasami function
for n odd. Here we study whether a similar property can be derived for the Dobbertin
exponent.

Recall that the exponents d and d′ of the functions xd and xd
′

over F2n are in the
same cyclotomic coset if d′ = 2kd mod (2n − 1) for some non-negative integer k. Power
functions with exponents in the same cyclotomic coset have the same extended Walsh
spectrum, and the same differential uniformity. In particular, if one of them is APN
(AB), then the second is also APN (AB). This means that we are free to choose any
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representatives from the cyclotomic coset of a power function. We use this below to find
an alternative representation for the Dobbertin APN function.

Lemma 1. For any positive integer m the following equivalences are true:

4∑
i=1

2im − 1 ≡ 22m+122m + 2m + 1

2m + 1
mod (25m − 1)

≡ 2m+123m + 22m + 1

22m + 1
mod (25m − 1)

≡ 2m+123m + 2m + 1

23m + 1
mod (25m − 1)

≡ 2m+122m + 2m + 1

24m + 1
mod (25m − 1).

Proof. Consider the first congruence. We first prove that 2m + 1 is invertible modulo
25m − 1, i.e. that gcd(2m + 1, 25m − 1) = 1. This follows from

gcd(2k + 1, 2l − 1) =

{
1, if l/ gcd(l, k) is odd;

2gcd(m,k) + 1, if l/ gcd(l, k) is even.
(1)

Indeed, since gcd(m, 5m) = m, we have gcd(2m + 1, 25m − 1) = 1.
For simplicity, denote 2m by y. It remains to check the equivalence (y+ 1)(y4 + y3 + y2 +
y − 1) ≡ 2y2(y2 + y + 1) mod (y5 − 1) which is straightforward. Indeed, computing the
left-hand side of this equivalence, we get
(y + 1)(y4 + y3 + y2 + y − 1) = y5 + 2y4 + 2y3 + 2y2 − 1 ≡ 2y4 + 2y3 + 2y2 mod (y5 − 1).
This proves the first statement of the lemma.

The other three equivalences are proven in the same way. A justification that 22m + 1,
23m+1 and 24m+1 are invertible modulo 25m−1 easily follows from (1). The corresponding
congruences are then straightforward to check.

Lemma 2. Let m be a positive integer. Then, for any positive integers j, l, r such that
1 ≤ j, l, r < 5m, the following inequivalence holds:(

4∑
i=1

2im − 1

)
(2j + 1) 6≡ 2l + 2r mod (25m − 1). (2)

Proof. We shall show that for any 1 ≤ j < 5m, the 2-weight of the left-hand side of (2)
is always strictly greater then 2. The cases j ∈ {m, 2m, 3m, 4m} are covered in Lemma 1

when the 2-weight of

(
4∑

i=1

2im − 1

)
(2j + 1) equals 3. We thus consider the remaining 5

cases

Sequences and Their Applications (SETA) 2020 4



1. 1 ≤ j < m,

2. j = m+ j′, 1 ≤ j′ < m,

3. j = 2m+ j′, 1 ≤ j′ < m,

4. j = 3m+ j′, 1 ≤ j′ < m,

5. j = 4m+ j′, 1 ≤ j′ < m.

In all of these cases, the 2-weight of

(
4∑

i=1

2im − 1

)
(2j + 1) is equal to m+ 6. Indeed,

for 1 ≤ j < m we get(
4∑

i=1

2im − 1

)
(2j + 1) ≡ (

4∑
i=1

2im+j − 2j +
4∑

i=1

2im − 1) mod (25m − 1).

Hence,

wt

((
4∑

i=1

2im − 1

)
(2j + 1)

)
= wt

( 4∑
i=1

2im+j+
4∑

i=2

2im
)
+wt(2m−2j−1

)
= 7+(m−1) = m+6.

Similarly, for j = m+ j′, 1 ≤ j′ < m:(
4∑

i=1

2im − 1

)
(2j + 1) =

(
4∑

i=1

2im − 1

)
(2m+j′ + 1) =

5∑
i=2

2im+j′ − 2m+j′ +
4∑

i=1

2im − 1

≡
( 4∑

i=2

2im+j′ − 2m+j′ +
4∑

i=1

2im + 2j′ − 1
)

mod (25m − 1).

Therefore,

wt

((
4∑

i=1

2im − 1

)
(2j + 1)

)
= wt

(
4∑

i=2

2im+j′ − 2m+j′ +
4∑

i=1

2im + 2j′ − 1

)

= wt(
4∑

i=2

2im+j′ + 24m + 23m + 2m) + wt(22m − 2m+j′)

+wt(2j′ − 1) = 6 + (m− j′) + j′ = 6 +m.

The remaining cases are proven in the exact same way.

The following corollary is a straightforward consequence of Lemma 1 and Lemma 2.

Corollary 1. Let xd be a power function defined over the field F25m with d = 24m + 23m +
22m + 2m − 1. Then xd is equivalent to power functions with the exponents 22m+2m+1

2m+1
,

23m+22m+1
22m+1

, 23m+2m+1
23m+1

and 22m+2m+1
24m+1

. Furthermore, these representations are optimal, in

the sense that xd is inequivalent to any power function whose exponent is a fraction of
two quadratic exponents.
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3 A conjecture about the Walsh spectrum of the Dobbertin
function

In order to get information about the form of the Walsh spectrum of the Dobbertin
function, we performed experiments over the fields F25m for m ≤ 7. Below, we present
computational data in two tables for n odd and n even, respectively.

Based on Tables 2 and 3, we conjecture that the Walsh spectrum of the Dobbertin
function xd, where d = 24m + 23m + 22m + 2m − 1 over F25m has the following possible
forms depending on the parity of m:

• {0, 22m(2m + 1),±25k−2,±a · 22m | 1 ≤ a ≤ k · (k+ 1), a odd} for m = 2k− 1, k ∈ N;

• {0,−22m(2m+1),±25k,±25k+1,±a·22m | 1 ≤ a ≤ k·(k+2), a odd} form = 2k, k ∈ N.

Moreover, WF (u, v) takes the maximum absolute value 22m(2m+1 + 1) only once, for
u = v = 1: for even m, we have minWF (u, v) = −22m(2m+1 + 1), and for odd m, we have
maxWF (u, v) = 22m(2m + 1). Hence, the nonlinearity of the Dobbertin function should
be 25m−1 − 22m−1(2m + 1).

Table 2

Walsh coefficients of the Dobbertin function over F25m with m = 2k − 1, 1 ≤ k ≤ 4

n = 5,m = 1, k = 1 n = 15,m = 3, k = 2 n = 25,m = 5, k = 3 n = 35,m = 7, k = 4

0 0 0 0
12 = 22(21 + 1) 576 = 26(23 + 1) 33792 = 210(25 + 1) 2113536 = 214(27 + 1)
±8 = ±23 ±64 = ±26 ±1024 = ±210 ±16384 = ±214
±4 = ±22 ±256 = ±28 ±8192 = ±213 ±262144 = ±218

±192 = ±3 · 26 ±3072 = ±3 · 210 ±49152 = ±3 · 214
±320 = ±5 · 26 ±5120 = ±5 · 210 ±81920 = ±5 · 214

±7168 = ±7 · 210 ±114688 = ±7 · 214
±9216 = ±9 · 210 ±147456 = ±9 · 214
±11264 = ±11 · 210 ±180224 = ±11 · 214

±212992 = ±13 · 214
±245760 = ±15 · 214
±278528 = ±17 · 214
±311296 = ±19 · 214

Table 3

Walsh coefficients of the Dobbertin function over F25m with m = 2k, 1 ≤ k ≤ 3
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n = 10,m = 2, k = 1 n = 20,m = 4, k = 2 n = 30,m = 6, k = 3

0 0 0
−80 = −24(22 + 1) −4352 = −28(24 + 1) −266240 = −212(26 + 1)
±16 = ±24 ±256 = ±28 ±4096 = ±212
±32 = ±25 ±1024 = ±210 ±32768 = 215

±64 = ±26 ±2048 = ±211 ±65536 = ±216
±48 = ±3 · 24 ±768 = ±3 · 28 ±12288 = ±3 · 212

±1280 = ±5 · 28 ±20480 = ±5 · 212
±1792 = ±7 · 28 ±28672 = ±7 · 212

±36864 = ±9 · 212
±45056 = ±11 · 212
±53248 = ±13 · 212
±61440 = ±15 · 212
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