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Abstract

A well-known conjecture that the classification of power APN functions is com-
plete up to equivalence dates back to 2000. The present paper finds that, in some
cases for n odd, both the Kasami APN function and its inverse can be described,
up to EA-equivalence, via the composition of a Gold function and the inverse of
a Gold function with a certain linear polynomial in between. We study whether a
similar approach can be used to obtain other APN functions by combining power
functions with linear polynomials. We experimentally find all APN functions over
F2n that can be expressed by composing two power functions with a linear polyno-
mial with coefficients in F2 for 4 ≤ n ≤ 9, and verify that the cases described in our
constructions exhaust all possibilities of this form.

1 Introduction

Let n be a positive integer, and let F2n denote the finite field with 2n elements. An
(n, n)-function, or vectorial Boolean function, is any mapping F from F2n to itself. Any
(n, n)-function can be uniquely represented as a univariate polynomial of the form F (x) =∑2n−1

i=0 aix
i, for ai ∈ F2n . We say that an (n, n)-function F is a power, or monomial,

function, if its univariate representation is of the form F (x) = xd for some positive integer
d.

Given a positive integer i, its binary weight is the number of ones in its binary notation.
More precisely, if i =

∑K
j=0 ci2

i for some positive integer K and for ci ∈ {0, 1} for

0 ≤ j ≤ K, then the binary weight of i is w(i) =
∑K

j=0 ci. The largest binary weight
of any exponent i in the univariate representation of an (n, n)-function F with ai 6= 0 is
called the algebraic degree of F . A function of algebraic degree 1, resp, 2, resp. 3 is called
affine, resp. quadratic, resp. cubic. An affine function F with F (0) = 0 is called linear.
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Vectorial Boolean functions are widely applied to the design of block ciphers in cryp-
tography, where they are used to represent so-called substitution boxes, or S-boxes, whose
input and output are both sequences of bits. This is made possible by the identification
of F2n with the n-dimensional vector space Fn2 over F2 = {0, 1}, which implies that any
element of F2n can be interpreted as an n-dimensional binary vector, i.e. a vector consist-
ing of zeros and ones. A prominent example is the AES, or Rijndael, block cipher, which
contains an (8, 8)-function at its core [8].

It is clearly important to analyze the resistance of any given vectorial Boolean function
against various kinds of cryptanalytic attacks. One of the most powerful attacks against
block ciphers is differential cryptanalysis [2], which exploits statistical dependencies be-
tween the difference a = x− y of two inputs and the difference b = F (x)− F (y) of their
corresponding outputs under F : F2n → F2n ; if, for some input difference a ∈ F2n , the
probability of obtaining some output difference b ∈ F2n is greater than uniform, this cor-
relation can be used to mount an attack on the corresponding block cipher. Furthermore,
the efficiency of the attack is directly related to the largest probability among all pairs
(a, b) ∈ F2

2n of input and output differences.
The notion of the differential uniformity of a function is introduced in [15] as a mea-

surement of the resistance to this kind of attack. More precisely, the differential uniformity
∆F of an (n, n)-function F is defined as the largest number of solutions x ∈ F2n to any
equation of the form F (x) + F (a+ x) = b for a, b ∈ F2n with a 6= 0, i.e.

∆F = max
a∈F∗2n ,b∈F2n

#{x ∈ F2n : F (a+ x) + F (x) = b}.

Since a+ x is a solution to F (x) + F (a+ x) = b whenever x is, ∆F must be even for any
F , and hence can be no lower than 2. The (n, n)-functions attaining this lower bound
with equality are called almost perfect nonlinear (APN) and provide the best possible
resistance to differential cryptanalysis.

APN functions are typically classified with respect to CCZ-equivalence, which is cur-
rently the most general known equivalence relation that preserves the differential unifor-
mity [7]. Two (n, n)-functions F and G are said to be Carlet-Charpin-Zinoviev-equivalent,
or CCZ-equivalent, if their graphs ΓF = {(x, F (x)) : x ∈ F2n} and ΓG = {(x,G(x)) : x ∈
F2n} are affine equivalent, i.e. if there is an affine permutation A : F2

2n → F2
2n such that

A(ΓF ) = ΓG. Another equivalence relation preserving differential uniformity is the so-
called extended affine equivalence, or EA-equivalence. Two functions F and G are said
to be EA-equivalent if there exist affine permutations A1, A2 of F2n and an affine function
A : F2n → F2n such that A1 ◦ F ◦ A2 + A = G. EA-equivalence is a particular case of
CCZ-equivalence, with the latter being strictly more general than EA-equivalence and
taking inverses of permutations [6].

In the case of power functions, CCZ-equivalence coincides with cyclotomic equivalence.
Two power functions F (x) = xd and G(x) = xe over F2n , where d, e, n are positive integers,
are said to be cyclotomic equivalent if d ≡ 2ke mod (2n−1) for some positive integer k, or
if d−1 ≡ 2ke mod (2n− 1) for some positive integer k in the case that gcd(d, 2n− 1) = 1,
with d−1 being the multiplicative inverse of d modulo 2n− 1. Cyclotomic equivalence has
the advantage of being significantly simpler to test than both EA- and CCZ-equivalence.
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Table 1: Known infinite families of APN power functions over F2n

Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [13, 15]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [14, 16]
Welch 2t + 3 n = 2t+ 1 3 [9]

Niho
2t + 2t/2 − 1, t even

n = 2t+ 1
(t+ 2)/2

[10]
2t + 2(3t+1)/2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [1, 15]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [11]

APN functions have been studied since the 90’s, and only around 16 infinite families
of such functions are known to date. In particular, this illustrates that it is quite challeng-
ing to construct such functions, which should come as no surprise, as cryptographically
strong functions exhibit no clear patterns or regularities by design. Among the known
APN functions, the power APN functions play a particularly prominent role. For one,
the earliest known examples of APN functions and of infinite families of APN functions
are power functions. For another, all known APN functions (including both instances of
infinite families and unclassified sporadic examples) are CCZ-equivalent to power func-
tions or quadratic functions (that is, functions of algebraic degree 2), with only one known
exception in F26 [12].

The six known infinite families of APN monomials are given in Table 1. It is con-
jectured that this classification is complete up to CCZ-equivalence [11], i.e. any APN
power function is CCZ-equivalent to an instance from one of the families in Table 1. The
conjecture is verified computationally for n ≤ 24 by Anne Canteaut according to [11] and
later by Edel for n ≤ 34 and n = 36, 38, 40, 42 (unpublished).

The present paper is dedicated to possible constructions of power APN functions. We
study the composition of two power functions Pi(x) = xi and Pj(x) = xj with a linear
polynomial L of the form Pi◦L◦Pj. In particular, we focus on the possibility of obtaining
an APN function by this construction. We discover that in some cases, a function EA-
equivalent to the inverse of a Kasami APN function can be described via the composition
of a Gold function and the inverse of a Gold function with certain linear maps. Further,
we experimentally find all APN functions over F2n that can be expressed by composing
two power functions with a linear polynomial with coefficients in F2 for 4 ≤ n ≤ 9, and
verify that the cases described in our constructions exhaust all possibilities of this form.

2 Composition of power functions with linear functions

To facilitate the discussion, we introduce the following notation:

1. Pi(x) = xi for any positive integer i;

2. Gi(x) = x2
i+1 is the Gold function with parameter i;
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3. Ki(x) = x2
2i−2i+1 is the Kasami function with parameter i;

4. W (x) = x2
t+3 is the Welch function, where n = 2t+ 1;

5. N(x) = x2
t+2t/2−1 and N(x) = x2

t+2(3t+1)/2−1 is the Niho function for t even and for
t odd, respectively, where n = 2t+ 1;

6. I(x) = x2
n−2 is the inverse function;

7. D(x) = x2
4i+23i+22i+2i−1 is the Dobbertin function, where n = 5i.

Below, we study the composition of two power functions Pi(x) = xi and Pj(x) = xj

with a linear polynomial L of the form

Pi ◦ L ◦ Pj (1)

over the finite field F2n for some positive integer n. In particular, we focus on the possi-
bility of obtaining an APN function by this construction. We consider the case of n odd
and n even separately, and then present our computational findings.

2.1 The case of odd dimension

Our study is motivated by an initial observation that, over any finite field F2n with n
odd, composing the Gold function Gi(x) = x2

i+1 with its inverse G−1i (x) (where i is any
positive integer with gcd(i, n) = 1) and the linear polynomial L(x) = x2

2i
+ x in between

gives a function EA-equivalent to the Kasami function Ki(x) = x2
2i−2i+1 with the same

parameter i. More precisely, we observe that

Gi ◦ L ◦G−1i (x) = Ki(x) + x2
2i

+ x2
i

+ x,

where x 7→ x2
2i

+ x2
i
+ x is a linear function. In fact, taking Lµ(x) = x2

2i
+ µx, we have

Gi ◦ Lµ ◦G−1i (x) = µKi(x) + x2
2i

+ µ2ix2
i

+ µ2i+1x

for any µ ∈ F∗2n .
We thus see that in certain cases, a function CCZ-equivalent to a Kasami function

can be obtained by combining a Gold function and the inverse of a Gold function with
a linear polynomial. A formal treatment of this observation is provided in the following
proposition. This suggests that functions CCZ-inequivalent to Pi and Pj can be obtained
as Pi ◦ L ◦ Pj. We contrast this with EA-equivalence, in which an (n, n)-function F is
combined with two linear permutations L1, L2 in the form L1 ◦ F ◦ L2. We note that all
linear polynomials L that we compose with in Propositions 1 and 2 are 2-to-1 over F2n ,
while the linear functions L1 and L2 in the definition of EA-equivalence are necessarily
bijective. In particular, this shows that while the Kasami functions (and their inverses)
are always 1-to-1 functions for odd dimensions, the addition of certain linear functions
can make them 2-to-1 functions.
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Proposition 1. Let n = 2m+1, and denote Lµi (x) = µx2
i
+x. Then, for any 1 ≤ i ≤ n−1,

we have

Gi ◦ Lµ2i ◦G−1i (x) = Aµi (x) + µ2iKi(x), (2)

where Aµi (x) = µ2i+1x2
2i

+ µx2
i
+ x.

Similarly, for any 1 ≤ i ≤ n− 1, we have

Gi ◦ Lµn−2i ◦G−1i (x) = µKi(x
2−2i

) + Cµ
i (x2

−2i

), (3)

where Cµ
i (x) = µ2i+1x+ µ2ix2

i
+ x2

2i
.

Proof. Denoting x = y2
i+1, we obtain

Gi ◦ Lµ2i ◦G−1i (x) =
(
µy2

2i

+ y
)2i+1

= µ2i+1y2
2i(2i+1) + µ2iy2

3i+1 + µy2
i(2i+1) + y2

i+1

= µ2i+1x2
2i

+ µ2ix(2
3i+1)/(2i+1) + µx2

i

+ x

= Aµi (x) + µ2iKi(x)

due to Ki(x) = x2
2i−2i+1 = x(2

3i+1)/(2i+1). The proof in the case of Lµn−2i is similar.

A natural question is whether APN functions other than the Kasami function can be
obtained in the same manner. The following two propositions demonstrate two ways in
which we can reach the EA-equivalence class of the inverse of the Kasami function by
composing a Gold function and the inverse of a Gold function (with different parameters)
with a linear polynomial in between. We note that the polynomial expression of the inverse
of the Kasami APN function in odd dimension (that is, the expression of its exponent as
a power function) can be quite complex [18]. The expression of K−1i in Proposition 2 is
therefore rather interesting in this sense. We note that explicit formulas for the inverses
of the Dobbertin and Welch exponents have previously been studied in [17].

Proposition 2. Let n = 3s±r, 3s ≥ r and gcd(3s, r) = 1, n odd, and let Lµi (x) = µx2
i
+x.

Then

Gs ◦ Lµ2s ◦G−1r (x) =

{
Aµ ◦K−1s (x2

3s
) + µ2sx2

3s
n = 3s+ r

Aµ ◦K−1s (x) + µ2sx2
s

n = 3s− r,
(4)

where Aµ(x) = µ2s+1x2
2s

+ µx2
s

+ x is a linear permutation.
Similarly, we have

Gs ◦ Lµn−2s ◦G−1r (x) =

{
Bµ
s ◦K−1s (x) + µx2

−2s
n = 3s− r

Bµ
s ◦K−1s (x2

3s
) + µx2

s
n = 3s+ r,

(5)

where Bµ
s (x) = x+ µ2sx2

n−s
+ µ2s+1x2

n−2s
is a linear permutation.
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Proof. Denoting by y = x1/(2
r+1) the inverse of Gr(x), we obtain by straightforward

manipulation

Gs ◦ Lµ2s ◦G−1r (x) = Gs ◦ Lµ2s(y) =
(
µy2

2s

+ y
)2s+1

= µ2s+1y2
2s(2s+1) + µ2sy2

3s+1 + µy2
s(2s+1) + y2

s+1

= Aµ
(
y2

s+1
)

+ µ2sy(2
3s+1).

Suppose now that n = 3s+ r. Then

1

2r + 1
≡ 2n

2r + 2n
≡ 23s+r

2r(23s + 1)
≡ 23s

23s + 1
mod (2n − 1),

so that y2
s+1 = x(2

s+1)/(2r+1) = x2
3s(2s+1)/(23s+1), which is preciselyK−1s (x2

3s
) sinceKs(x) =

x2
2s−2s+1; equivalently, Ks(x) = x(2

3s+1)/(2s+1), whence K−1s (x) = x(2
s+1)/(23s+1). Similarly,

µy2
3s+1 = µx(2

3s+1)/(2r+1) = µx2
3s

, which concludes the proof in the case of n = 3s+ r.
When n = 3s− r, we have

1

2r + 1
≡ 1

2n+r + 1
≡ 1

23s + 1
mod (2n − 1),

so that y2
s+1 = x(2

s+1)/(23s+1) = K−1s (x), and µy2
3s+1 = µx2

3s+12r + 1 = x, concluding the
proof for Lµ2s.

Let j be a positive integer. We will prove that µ2j+1x2
2j

+ µx2
j

+ x permutes F2n

whenever 3 - n by showing that it has a trivial kernel. Suppose that µ2j+1x2
2j

+µx2
j
+x =

0. Raising both sides to the power 2j and multiplying by µ, we obtain µ22j+2j+1x2
3j

+
µ2j+1x2

2j
+ µx2

j
= 0. Summing both of these identities, we have x = µ22j+2j+1x2

3j
, and

hence, assuming x 6= 0, x2
3j−1 = (1/µ)2

2j+2j+1. Since 23j − 1 = (22j + 2j + 1)(2j − 1),
and gcd(22j + 2j + 1, 2n − 1) = 1 for 3 - n, this implies x2

j−1 = 1/µ, whence x2
j

= x/µ
and x2

2j
= x/µ2j+1. Substituting this into µ2j+1x2

2j
+ µx2

j
+ x = 0, we obtain x/µ = 0,

implying x = 0 and contradicting our assumption that x 6= 0.
The proof for Bµ

s follows the same logic. Denoting once again y = x1/(2
r+1), we obtain

Gs ◦ Lµn−2s ◦G−1r (x) =
(
y + µy(2

n−2s)
)2s+1

= y2
s+1 + µy2

n−2s+2s + µ2sy2
n−s+1 + µ2s+1y2

n−2s+2n−s

= Bµ
s (y2

s+1) + µy2
n−2s+2s .

We have already seen that y2
s+1 becomes K−1s (x2

3s
), resp. K−1s (x) when n = 3s + r,

resp. n = 3s− r. When n = 3s+ r, the term µy2
n−2s+2s becomes

µy2
s+r+2s = µx2

s(2r+1)/(2r+1) = µx2
s

;

when n = 3s− r, we have

µy2
n−2s+2s = µy2

s−r+2s = µx2
s−r(2r+1)/(2r+1) = µx2

s−r

= µx2
−2s

.

Finally, showing that Bµ
s (x) is a permutation is done in the same way as for µ2j+1x2

2j
+

µx2
j

+ x.
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While Proposition 2 explicitly describes only compositions of the form Gs ◦ L ◦ G−1r
over F2n , where n = 3s± r, we can observe that Gs and Gn−s yield equivalent functions,
and so the parameters s and r can be freely replaced with n− s and n− r, respectively,
thereby allowing for a wider range of compositions. Furthermore, if s ≡ s′ mod n, then
Gs and Gs′ correspond to the same function, and so arbitrary multiples of the dimension
n can be added or subtracted, allowing us even more freedom. We thus have the following
general principle.

Remark 3. Assuming the notation of Proposition 2, the following compositions are all
equivalent for any linear function L:

Gi ◦ L ◦G−1j ,

Gn−i ◦ L ◦G−1j ,

Gi ◦ L ◦G−1n−j,
Gn−i ◦ L ◦G−1n−j.

For instance, the composition G1 ◦L◦G−13 over F27 cannot be directly expressed using
Proposition 2; but taking s = n − 1 = 6, and r = 11 ≡ 4 mod n so that n − 3 = 4, we
have n = 3 · s− r, and we obtain the case G1 ◦ L ◦G−13 .

Corollary 4. Let n = 2m + 1 be odd with 3 - n, and let i be a positive integer in the
range 1 ≤ i ≤ n − 1 such that gcd(i, n) = 1. Let µ ∈ F∗2n be arbitrary, and denote
Lµi (x) = µx2

i
+ x as before. Then the functions

Gi ◦ Lµ2i ◦G−13i

and

Gi ◦ Lµn−2i ◦G−13i

are APN, and EA-equivalent to the inverse K−1i of the Kasami function with parameter
i.

Proof. Take s = i + n and r = 3s − n. We have 3s − r = n. Furthermore, s ≡ i
mod n, and r ≡ 3i mod n. Thus, we only have to show that the pair (s, r) satisfies the
hypothesis of Proposition 2 in order to finish the proof. We want to show that |r| ≤ 3s,
i.e. −3s ≤ 3s − n ≤ 3s, which gives the inequalities n ≥ 0 and n ≤ 6s ≤ 6i + 6n.
Both of these are clearly always satisfied. Finally, we need to show that gcd(3s, r) = 1.
Clearly, 3 - r since 3 - n by the hypothesis; thus, we only need to show that gcd(s, r) = 1.
Suppose d is a non-trivial common divisor of s and r = 3s − n; then d is a non-trivial
common divisor of s = i + n and n, and hence of i and n. But since 1 ≤ i ≤ n − 1 by
assumption, we reach a contradiction, and thus gcd(s, r) = gcd(3s, r) = 1 as claimed.
Now, all conditions on (s, r) from the hypothesis of Proposition 2 are satisfied, and an
application of the latter concludes the proof.
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Remark 5. We note that while Propositions 1 and 2 describe cases in which a composition
of the form Pi ◦L ◦ Pj is EA-equivalent to a Kasami Ki function (or its inverse), in some
cases we obtain K1 (or its inverse), which is actually the Gold function G1 (or its inverse).
In particular, this happens in Proposition 1 for i = 1, and in Proposition 2 for s = 1.

In our experimental results, we also observe combinations of the form G−1t ◦ L ◦ Gt,
which are EA-equivalent to G−1t , and combinations of the form I ◦ L ◦ I, which gives a
function EA-equivalent to the inverse function I.

Observation 6. Let n = 2t + 1. Then the compositional inverse of Gt(x) = x2
t+1 is

x2
t+1(2t+1−1). Consequently, the composition G−1t ◦ L ◦Gt becomes

G−1t ◦ L ◦Gt(x) =
(
x2

t+1 + x2
2t+2t

)2t+1·(2t+1−1)
(6)

for L = x2
t

+ x, and

G−1t ◦ L ◦Gt(x) =
(
x2

t+1 + x2
2t+1+2t+1

)2t+1·(2t+1−1)
(7)

for L = x2
t+1

+ x. Similarly, we get

I ◦ L ◦ I(x) =
(
x2

2t−1 + x2
2t+1−2

)22t−1
(8)

for L = x2 + x, and

I ◦ L ◦ I(x) =
(
x2

2t−1 + x2
4t−22t

)22t−1
(9)

for L = x2
2t

+ x.
The functions in (6) and (7), and (8) and (9) are EA-equivalent to G−1t and I, respec-

tively. Furthermore, for n ∈ {3, 5, 7, 9}, the combinations described in (6), (7), (8), and
(9), and Propositions 2 and 1 exhaust all APN functions over F2n that can be obtained as
Pi ◦ L ◦ Pj for any affine function L with coefficients in F2.

Proof. We show that the functions from (6) and (8) are equivalent to the Gold and inverse
functions, respectively.

In the Gold case, we have n = 2t+ 1, and G−1t ◦L ◦Gt = (x2
t+1+1 +x2

t+1)2
t+1−1. Since

2t+1 − 1 = 2t + 2t−1 + · · ·+ 1, we have that this is equal to

t∏
j=0

(x2
t+1+1 + x2

t+1)2
j

=
t∏

j=0

x2
j(2t+1)

t∏
j=0

(x2
t

+ 1)2
j

= x2
t

t∏
j=0

(x2
t

+ 1)2
j

= x2
t
2t+1−1∑
j=0

(x2
t

)j.

The latter function is EA-equivalent to

2t+1∑
j=1

xj =
(x2

t+1+1 + 1)

x+ 1
+ 1.
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Using the transformation x 7→ x+ 1 (and adding 1), we get the function

(x2
t+1+1 + x2

t+1
+ x)

x
= x2

t+1

+ x2
t+1−1 + 1,

which is EA-equivalent to G−1t .

As for the inverse case, the function from (8) can be written as 1/(x + 1) + x + 1.
Indeed, I ◦ L ◦ I = ( 1

x2
+ 1

x
)−1 = (1+x

x2
)−1 = x2

1+x
= 1

x+1
+ x+ 1.

2.2 The case of even dimension

Our experimental results indicate that the case for even values of n is somewhat less
interesting. For n = 6, no APN functions can be obtained as Pi ◦ L ◦ Pj for L with
coefficients in F2, while for n ∈ {4, 8}, only APN functions from the equivalence class of
Pi can be obtained in this manner, as described in the following proposition.

Proposition 7. Let n = 2m, ln = 2n−1+1
3

, L(x) =
∑t

j=1 x
22ij be a permutation for some

positive integer t and for some non-negative integers ij for 1 ≤ j ≤ t, and let 1 ≤ i ≤ 2n−2
be arbitrary with 3 | i. Then

Pi ◦ L ◦ Pln(x) = Pi ◦M, (10)

and

Pi ◦ L ◦ P2ln+1 = P2i ◦M ′ ◦ x2,

where M(x) =
∑t

j=1 x
22ij−1

and M ′(x) =
∑t

j=1 x
22ij+1

. In particular, both Pi ◦L ◦Pln and
Pi ◦ L ◦ P2ln+1 are linear equivalent to Pi.

Proof. Let us denote y = xln . We will prove that

L(y)3 =

(
t∑

j=1

y2
2ij

)3

=

(
t∑

j=1

x2
ij−1

)3

= M(x)3;

this then implies the case for general i due to 3 | i.
In the following, we use the fact that

2n + 2

3
3j ≡ 3j mod (2n − 1)

for any integer j, and, in particular

2n + 2

3
(22ij − 1) ≡ 2n−k + 1 mod (2n − 1) (11)

for any integer ij.
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Clearly, (x(2
n−1)/3f(x))3 = f(x)3 for any polynomial f(x) over F2n with f(0) = 0.

We apply this to L(y)3 = L(xln)3. The exponent of x in y2
2ij

= x2
2ij ln = x2

2ij (2n−1+1)/3

becomes

22ij
2n−1 + 1

3
+

2n − 1

3
=

2n+2ij−1 + 22ij + 2n − 1

3

=
2n + 2

3
(22ij−1 + 1)− 1 ≡ 22ij−1 mod (2n − 1)

for any non-negative integer ij. Thus, L(y)3 = M(x)3 as claimed.
The case for 2ln + 1 follows in the same way, but we multiply the expression by

(x(2
n−1)/3)2. Denoting z = x2ln+1, the exponent of x in z2

2ij
becomes

22ij

(
2n + 2

3
+ 1

)
+

2n+1 − 2

3

= (22ij − 1)

(
2n + 2

3

)
+ 22ij +

2n + 2

3
+

2n+1 − 2

3

=
2n + 2

3
+ 22ij − 1 + 22ij +

2n+1 − 2

3
= 2n − 1 + 22ij+1 ≡ 22ij+1 mod (2n − 1).

The rest follows in the same way as in the previous case.

We then immediately have the following generalization.

Corollary 8. Let n = 2m be even, ln = 2n−1+1
3

, L(x) =
∑t

j=1 x
22ij be a permutation for

some positive integer t and for non-negative integers ij for 1 ≤ j ≤ t, and let F (x) = G(x3)
for some (n, n)-function G. Then

F ◦ L ◦ Pln(x) = F ◦M,

F ◦ Lj ◦ P2ln+1(x) = F ◦ P2 ◦ L,

where M(x) =
∑t

j=1 x
2n−kj−1

+ x2
n−1

. In particular, F ◦ L ◦ Pln, and F ◦ L ◦ P2ln+1 are
linear equivalent to F .

We note that all APN functions that we obtain as Pi◦L◦Pj for L linear with coefficients
in F2 over F2n with n ∈ {4, 6, 8} are described by Proposition 7.

2.3 Experimental results

For F2n with 4 ≤ n ≤ 9, we consider the function F = Pi ◦ L ◦ Pj for all possible linear L
over F2n with coefficients in F2 and for a single i and j from each cyclotomic coset, and
record the instances in which F is APN. We confirm that all such cases correspond to one
of the cases treated in Sections 2.1 and 2.2.
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