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Abstract

In this paper we describe a number theoretic view on binary shift register se-
quences. We illustrate this approach by revisiting some known results on the pure
and circulating registers which we reprove using tools from modular arithmetic.

1 Introduction

The motivation for this paper was the simple observation that the cycles produced by shift
registers are denoted by a representative member, which very often instead of as a binary
sequence, it is given by its integer value. Starting from this, we take on an alternative
view on the theory of shift registers by moving away from the traditional approach of
binary sequences and working entirely with the corresponding integers. After providing
basic information on the necessary theory using the new approach in Sect. 2, we apply it
to two well studied registers, the Pure (Sect. 3) and Complementary (Sect. 4) circulating
registers, and re-obtain known results [2, 4, 6, 7, 3] using tools from modular arithmetic.

Our aim is not to pronounce the similarities and differences, or make any claims on
possible advantages and disadvantages between existing approaches and the one we de-
scribe here. It is rather to provide a unified description of this number theoretic approach
so it can serve as an additional tool for further studies in the domain of shift registers.

2 From Binary Sequences to Modular Arithmetic

Any non-singular binary shift register of order n can be defined in terms of a bijective
map g : Fn2 → Fn2 given by

g(s0, . . . , sn−1) = (s1, . . . , sn−1, s0 ⊕ F (s1, . . . , sn−1)) , (1)

for some Boolean function F : Fn−12 → F2 [2].

∗This work was supported by The Research Council of Norway under project 247742/O70.
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We can shift from binary tuples to modular arithmetic by considering each k-tuple
(s0, . . . , sk−1) ∈ Fk2 as the binary representation of the integer

∑k−1
i=0 si2

k−1−i ∈ Z2k . The
corresponding functions will be F : Z2n−1 → Z2 and g : Z2n → Z2n given by

g(x) =

{
2x+ F (x) mod 2n if x < 2n−1

2x+ 1− F (x− 2n−1) mod 2n if x ≥ 2n−1
. (2)

Rewriting (2) in terms of the support of F , namely the set D ⊆ Z2n−1 such that x ∈ D
if and only if F (x) = 1, we obtain

gn,D(x) =

{
2x+ 1 mod 2n if x ∈ D or if x ≥ 2n−1 and x− 2n−1 6∈ D

2x mod 2n otherwise
. (3)

We can also define the complemetary map of gn,D as gn,D = gn,Z2n−1\D.

Example 1. Two basic, yet important maps are gn,∅, called the Pure Circulating Register
of order n (PCRn), and its complementary map gn,Z2n−1 , called the Complementary Cir-
culating Register of order n (CCRn). For brevity we will be respectively denoting them
by gpnand gcn . They are given by

gpn(x) =

{
2x mod 2n if x < 2n−1

2x+ 1 mod 2n if x ≥ 2n−1
= gcn(x) (4)

and

gcn(x) =

{
2x+ 1 mod 2n if x < 2n−1

2x mod 2n if x ≥ 2n−1
= gpn(x) . (5)

The weight of x ∈ Z2n , denoted by wt(x), is the number of ones in its binary repre-
sentation. By Eqn. (1) we can deduce that wt(x)− 1 ≤ wt(gn,D(x)) ≤ wt(x) + 1.

Example 2. For any x ∈ Z2n , PCRn simply cyclically shifts the binary representation of
x and therefore wt(gpn(x)) = wt(x). CCRn, however, also complements the last bit after
the cyclic shift, hence the weights differ by one: wt(gcn(x)) = wt(x) + 1 if x < 2n−1 and
wt(gcn(x)) = wt(x)− 1 otherwise.

For each x ∈ Z2n , the smallest i ∈ Z such that x = gin,D(x) is called its period with
respect to gn,D and denoted by pgn,D(x), where gin,D denotes the composition of gn,D with
itself i times. Each map gn,D partitions Z2n into cycles. We say x1, x2 ∈ Z2n belong to the
same cycle if and only if x2 = gin,D(x1) for some i such that 1 ≤ i < pgn,D(x1). We shall
denote each cycle by Ct where t is its member with the smallest integer value. The number
of elements in a cycle is called its length and is equal to the period of each of them. In case
there is a single cycle we call it a maximal length or full or de Bruijn cycle. Mykkeltveit
[5] proved the conjecture of Golomb [2] that no more than Z(n) = 1

n

∑
d|n φ(d)2n/d cycles

can be obtained from any map gn,D, where φ is Euler’s Totient function.

Example 3. The 8 cycles from PCR5 are C0 = {0}, C1 = {1,2,4,8,16}, C3 = {3,6,12,24,
17}, C5 = {5,10,20,9,18}, C7 = {7,14,28,25,19}, C11 = {11,22,13,26,21}, C15 = {15,30,29,
27,23}, and C31 = {31}. The 4 cycles from CCR5 are C0 = {0,1,3,7,15,31,30,28,24,16},
C2 = {2,5,11,23,14,29,26,20,8,17}, C4 = {4,9,19,6,13,27,22,12,25,18}, and C10 = {10,21}.
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Figure 1: The adjacency graph for PCR5 (left) and CCR5 (right).

The adjacency graph of a map gn,D is the undirected connected graph with vertices
the map’s cycles, and for each x ∈ Z2n−1 an edge labelled x between the cycle containing
x and the cycle containing gn,D(x). An edge from a cycle to itself is called intracyclic, and
extracyclic otherwise. For brevity, we represent multiple edges between two cycles by a
single edge labelled by the set of the corresponding labels that we call the adjacency set.

Example 4. The adjacency graphs for PCR5 and CCR5 are given in Fig. 1.

Two distinct x1, x2 ∈ Z2n−1 belong to the same adjacency set of a map gn,D if either

A. x1 and x2 belong to the same cycle and gn,D(x1) and gn,D(x2) belong to the same
cycle, in which case we shall call x1 and x2 an intracyclic pair, or

B. x1 and gn,D(x2) belong to the same cycle and x2 and gn,D(x1) belong to the same
cycle, in which case we shall cal x1 and x2 an extracyclic pair.

Example 5. An intracyclic pair in PCR5 are 2 and 4 which are on C1 while gcn(2) = 5 and
gcn(4) = 9 are on C5. An extracyclic pair in CCR5 are 5 and 10 since 5 and gpn(10) = 20
are on C2, and gpn(5) = 10.

The two conditions for intracyclic pairs can be expressed formally as (a1) x2 = gin,D(x1)

and (a2) gn,D(x1) = gjn,D(gn,D(x2)), for some i, j such that 1 ≤ i < p1 and 1 ≤ j < p2,
where p1 = pgn,D(x1) and p2 = pgn,D(gn,D(x1)). Together they imply

gn,D(x1) = gjn,D(gn,D(gin,D(x1))) . (6)

Remark 6. Conditions (a1) and (a2) are equivalent to x1 = gp1−in,D (x2) and gn,D(x2) =

gp2−jn,D (gn,D(x1)). Hence, if one member of an intracyclic pair satisfies (6) with the pair of
exponents (i, j), the other member satisfies it with the pair of exponents (p1 − i, p2 − j).

Similarly, the extracyclic pair conditions can be expressed as (b1) x1 = gin,D(gn,D(x2))

and (b2) x2 = gjn,D(gn,D(x1)), for some i, j such that 1 ≤ i < p1 and 1 ≤ j < p2, where p1
and p2 are as above. Together they imply

x1 = gin,D(gn,D(gjn,D(gn,D(x1)))) . (7)

The study of adjacency sets provides guidelines for joining and splitting cycles from a
map gn,D. Adding an element of an adjacency set to D if it does not exist, or removing
it if it does, affects the cycles connected by the edge it labels. If the edge is extracyclic
then the two cycles sharing it merge into a single cycle, otherwise the corresponding cycle
splits into two cycles. By joining all cycles, we obtain a de Bruijn cycle.

Sequences and Their Applications (SETA) 2020 3



G. Petrides

3 PCR

3.1 Cycle Structure

Since gpn(2n− 1) = 2n− 1, cycle C2n−1 is of length 1. For any x ∈ Z2n \ {2n− 1}, (4) can
be expressed as

gpn(x) = 2x mod 2n − 1 . (8)

The length of the cycle containing x ∈ Z2n \ {2n − 1} is equal to the period pgpn (x), the
smallest positive exponent i such that 2ix ≡ x mod 2n − 1, or equivalently

2i ≡ 1 mod
2n − 1

gcd(x, 2n − 1)
. (9)

It follows that when x is coprime to 2n − 1, the length of the cycle containing it is equal
to n, the maximum possible. Therefore, there are at least φ(2n−1)

n
cycles of length n.

Proposition 7. The length of any cycle in PCRn divides n.

Proof. Suppose a cycle in PCRn has length k not dividing n, in which case n = ak+ b for
positive integers a and b < k. For every element x in the cycle we have gnpn(x) = 2nx ≡ x
mod 2n − 1, where 2nx = 2ak+bx = 2b2akx ≡ 2bx mod 2n − 1 since 2kx ≡ x mod 2n − 1.
Thus 2bx ≡ x mod 2n − 1, a contradiction on the minimality of k.

Let ζ(k, n) denote the number of cycles of length k in PCRn. Clearly,
∑n

k=1 k ζ(k, n) =
|Z2n| = 2n. This number is in fact equal to the number of binary Lyndon words and
irreducible polynomials of degree k over Z2 [1, 8].

Proposition 8.

ζ(k, n) =


1

k

∑
d|k

µ(d)2k/d if k | n

0 otherwise

,

where µ is the Möbius function.

Proof. By Prop. 7, k must divide n. It follows that
∑

d|n d ζ(d, n) = 2n and by Möbius

inversion we obtain ζ(k, n) = 1
k

∑
d|k µ(d)2k/d for any divisor k of n, as required.

Golomb [2] proved that PCRn partitions Z2n into exactly Z(n) cycles. Summing
ζ(k, n) over all divisors of n, an alternative formula can be obtained.

Corollary 9 ([8]). The number of cycles in PCRn is

Z(n) =
∑
d|n

1

d

∑
d′|d

µ(d′)2d/d
′
.
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3.2 Adjacency Sets

We begin with the fact that no intracyclic edge exists in PCRn as it would require an
x ∈ Zn−1 to be on the same cycle as gcn(x), which as seen in Example 2 is impossible due
to unequal weights [3].

A similar contradiction with respect to weights asserts that no extracyclic pairs exist
either: On one hand, since x2 < 2n−1, gcn(x2) being on the same cycle as x1 implies
wt(x1) = wt(gcn(x2)) = wt(x2) + 1. On the other hand, since x1 < 2n−1, gcn(x1) being on
the same cycle as x2 implies wt(x2) = wt(gcn(x1)) = wt(x1) + 1.

Regarding intracyclic pairs, 0 and 2n− 1 which have period 1, and 2n−1− 1 for which
gcn(2n−1−1) = 2n−1 ∈ C2n−1, need not be considered. For any x ∈ Z2n−1 \{2n−1−1}, (5)
can be expressed as

gcn(x) = 2x+ 1 mod 2n − 1 . (10)

Using (8) and (10), and rearranging, (6) for PCRn becomes

− 2(2i+j − 1)x1 ≡ 2j − 1 mod 2n − 1 , (11)

for some i, j such that 1 ≤ i < pgpn (x1) and 1 ≤ j < pgpn (2x1 + 1). In fact, Lemma 10
below asserts that 1 ≤ i, j ≤ n− 1.

We note that we must have i+ j 6= n, otherwise the LHS of (11) would be congruent
to 0, leading to a contradiction as the RHS can never be congruent to 0. Then, the
congruence is solvable if and only if gcd(2i+j − 1, 2n − 1) = 2gcd(n,i+j) − 1 divides 2j − 1,
which implies gcd(n, i+ j) divides j.

Lemma 10. In PCRn, intracyclic pairs label edges between cycles of length n only.

Proof. Let x1 and x2 be an intracyclic pair in PCRn, and denote the length of the cycle
containing them by p1, and that of the cycle containing 2x1 + 1 and 2x2 + 1 by p2. To
prove the lemma it suffices to show the equality of periods p1 = p2 = n.

First, multiplying both sides of (11) by 2p1 , using that 2p1x1 = x1 and applying (11)
on the LHS, and rearranging, we obtain

2p1 + 2j ≡ 2p1+j + 1 mod 2n − 1 . (12)

We must have that each of the summands on the LHS is congruent to a distinct sum-
mand on the RHS modulo 2n − 1. Such pairwise congruences are equivalent to pairwise
congruences in the exponents modulo n. The range of j implies j 6≡ 0 mod n, hence the
only possibility left is p1 ≡ 0 mod n giving p1 = n as required.

Next, we multiply both sides of (11) by 2p2 . On the LHS we have

−(2i+j − 1)2p2(2x1 + 1− 1) ≡ −(2i+j − 1)(2x1 + 1− 2p2)
≡ 2j − 1 + (2i+j − 1)(2p2 − 1) mod 2n − 1 ,

where in the second step we used 2p2(2x1+1) = (2x1+1), and in the third we applied (11).
Combining this with the RHS and rearranging, we obtain

2p2+i+j + 2j ≡ 2p2+j + 2i+j mod 2n − 1 . (13)

Working as above, and since i 6≡ 0 mod n, we are left with p2 = n as required.
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Magleby [4] and Fredricksen (as acknowledged in [3]) proved in different ways that
the adjacency sets in PCRn have size at most 2. The number of adjacency sets of this
maximal size was determined in [6, 7] and later on in [3], each using a different method.
We provide an alternative proof for both of these results.

Lemma 11. All intracyclic pairs in PCRn are disjoint.

Proof. Suppose on the contrary that there exist two non-disjoint intracyclic pairs in
PCRn, say x1 with x2 and x1 with x3. Apart from the exponent pair (i, j) that connects
x1 and x2 as above and yields (11), there exists an exponent pair (i′, j′), 1 ≤ i′, j′ ≤ n−1,
connecting x1 and x3 and yielding

− 2(2i
′+j′ − 1)x1 ≡ 2j

′ − 1 mod 2n − 1 . (14)

Multiplying both sides of (14) by 2i+j − 1, applying (11) on the LHS and rearranging
yields

2i+j+j
′
+ 2j + 2i

′+j′ ≡ 2i
′+j′+j + 2j

′
+ 2i+j mod 2n − 1 . (15)

Considering pairwise congruences as in the proof of Lemma 10, there are three cases:
First, i + j + j′ ≡ i′ + j′ + j mod n which implies i ≡ i′ mod n. Then, as j 6≡ i + j

mod n, we are left with j ≡ j′ mod n. Given that 1 ≤ i, j, i′, j′ ≤ n − 1, we must have
i = i′ and j = j′, yielding x2 = x3 and contraditicting that they are distinct.

Second, i+ j + j′ ≡ j′ mod n, implying i+ j ≡ 0 mod n, which is impossible as we
have seen that i+ j 6= n.

Third, i+ j+ j′ ≡ i+ j mod n implies j′ ≡ 0 mod n and contradicts the range of j′.
Since all cases lead to a contradiction, all intracyclic pairs in PCRn must be disjoint.

Corollary 12 ([4]). The maximum size any adjacency set can have in PCRn is 2.

Proof. Suppose on the contrary that there exists an adjacency set in PCRn containing
more than two distinct elements, and consider three of them. Since no extracyclic pairs
exist in PCRn, pairwise these three elements form non-disjoint intracyclic pairs, in con-
tradiction to Lemma 11.

Corollary 13 ([6, 7]). In PCRn, adjacency sets of size 2 label edges between cycles of
length n only.

Proof. This is a direct consequence of Lemma 10 and Cor. 12.

Theorem 14 ([6, 7]). In PCRn, the number of adjacency sets of size 2 is given by

p(n) =
1

2

∑
d|n
d6=n

φ
(n
d

)(n
d
− 2
)

2d−1 .

Proof. Adjacency sets of size 2 in PCRn correspond to intracyclic pairs. Therefore,
we begin by counting the number of suitable pairs of exponents (i, j) that render (11)
solvable. As we have seen, we must have i+ j 6= n and gcd(n, i+ j) divides j. Any proper
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divisor d of n is a possible gcd, and the possibilities for i + j are integers in the interval
1 ≤ i+j ≤ n−1 (due to reduction modulo n in the exponents) such that gcd(n, i+j) = d.
There are φ(n/d) of them. The possibilities for j are the multiples of d excluding i + j
(since i 6= 0) in the interval 1 ≤ j ≤ n− 1. There are n/d− 2 of them.

Next, for each suitable d, i and j there are 2d − 1 possible solutions to (11) given by
x1 = x0 + 2n−1

2d−1k, where k is an integer such that 0 ≤ k ≤ 2d − 2 and

x0 = −2−1
(

2i+j − 1

2d − 1

)−1(
2j − 1

2d − 1

)
mod

2n − 1

2d − 1
.

We are only interested in those solutions such that x1 < 2n−1. When d = 1, there is a

single solution. It is straightforward to verify that (2i+j − 1)
−1 ≡

∑(i+j)−1 mod n
l=1 2−l(i+j)

mod 2n − 1. It can then be shown (details will be given in the full paper) that x1 ≡∑n−j(i+j)−1

l=1 2−1−l(i+j). If x1 > 2n−1 then 2n−1 must appear as one of the summands, and
we would have −1− l(1 + j) ≡ n− 1 mod n which is only possible if either 0 or n were
in the range of the sum. This however does not happen as j(i+ j)−1 6≡ 0 mod n.

For d > 1, we have x0 <
2n−1
2d−1 < 2n−1 due to the modulus, hence k = 0 is suitable.

Since x0 is between 0 and the modulus, the maximum suitable value of k is km such that

km

(
2n−1
2d−1

)
< 2n−1 and (km + 1)

(
2n−1
2d−1

)
> 2n−1. After simple operations, this becomes

2d−1 − 1 − 2n−1−2d−1

2n−1 ≤ km < 2d−1 − 2n−1−2d−1

2n−1 . Since the fraction is less than one, km =

2d−1 − 1. Hence, the suitable solutions are for 0 ≤ k ≤ 2d−1 − 1, which means that only
2d−1 out of the 2d − 1 possible solutions are suitable.

Finally, putting everything together gives us the number of suitable solutions to (11).
The required number of distinct intracyclic pairs is half this number, something that
follows from Remark 6 and the fact that if the congruence is solvable for the pair of
exponents (i, j) then it is also solvable for the pair (n− i, n− j).

4 CCR

For any x ∈ Z2n , (5) can be expresed as

gcn(x) = 2x+ 1 mod 2n + 1 . (16)

It is easy to check that for any exponent k ∈ Z+ we have

gkcn(x) = 2k(x+ 1)− 1 mod 2n + 1 . (17)

Throughout this section we will refer to the dyadic valuation of positive integer n which
is the highest power of 2 that divides n. For brevity, we will denote it by ν(n) instead of
the conventional ν2(n).

4.1 Cycle Structure

The length of the cycle containing x ∈ Z2n is equal to the period pgcn (x), the smallest
positive exponent i such that gicn(x) = x. Using (17) this is equivalent to 2i(x+1) ≡ x+1
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mod 2n + 1, or

2i ≡ 1 mod
2n + 1

gcd(x+ 1, 2n + 1)
. (18)

It follows that when x + 1 is coprime to 2n + 1, the length of the cycle containing it is
equal to 2n, the maximum possible. Hence, there are at least φ(2n+1)

2n
cycles of length 2n.

Hauge [3] proved that the length of each cycle is even and divides 2n with an odd
quotient. We reformulate this as follows.

Proposition 15. The length of each cycle in CCRn is even and divides 2n but not n.

Proof. From Eqn. (17) we can see that gncn(x) 6≡ x mod 2n+1 and g2ncn (x) ≡ x mod 2n+1
for all x ∈ Z2n . If a cycle had length k dividing n, that would contradict the inequality,
and if it did not divide 2n then we would reach a contradiction as in the proof of Prop. 7.
Consequently, k is even.

Let ζ∗(k, n) denote the number of cycles of length 2k in CCRn. Clearly,
∑n

k=1 k ζ
∗(k, n) =

|Z2n| = 2n.

Proposition 16.

ζ∗(k, n) =


1

2ν(2n)k

∑
d|k

µ(d)2
2ν(n)k
d if k | n

2ν(n)

0 otherwise

.

Proof. By Prop. 15, 2k must divide 2n but not n. It is not difficult to check that for
any integer n, the divisors of 2n that are not divisors of n are of the form 2ν(2n)d where
d | n

2ν(n)
. It follows that

∑
d| n

2ν(n)
2ν(2n)d ζ∗(d, n) = 2n. Using the substitution n′ = n/2ν(n)

in the range of the sum and the RHS, and applying Möbius inversion we obtain ζ∗(k, n) =
1

2ν(2n)k

∑
d|k µ(d)2

2ν(n)k
d for any divisor k of n/2ν(n), as required.

Golomb [2] states that in CCRn there are Z∗(n) = 1
2
Z(n)− 1

2n

∑
2d|n φ(2d)2n/2d cycles.

We can provide an alternative formula by summing ζ∗(k, n) over all divisors of n/2ν(n).

Corollary 17. The number of cycles in CCRn is

Z∗(n) =
1

2ν(2n)

∑
d| n

2ν(n)

1

d

∑
d′|d

µ(d′)2
2ν(n)d
d′ .

4.2 Adjacency Sets

Both intra- and extracyclic pairs exist in CCRn. Before we begin with intracyclic ones,
note that for any x ∈ Z2n−1 , (4) can be expressed as

gpn(x) = 2x mod 2n + 1 . (19)

Sequences and Their Applications (SETA) 2020 8
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Using (16), (17) and (19), and rearranging, (6) for CCRn becomes

2(2i+j − 1)(x1 + 1) ≡ 2j − 1 mod 2n + 1 , (20)

for some i, j such that 1 ≤ i < pgcn (x1) and 1 ≤ j < pgcn (2x1 + 1). In fact, Lemma 18
below asserts that 1 ≤ i, j ≤ 2n− 1.

We note that we must have i+ j 6= 2n, otherwise the LHS of the congruence would be
congruent to 0, leading to a contradiction as the RHS can never be congruent to 0. Then,
the congruence is solvable if and only if gcd(2i+j − 1, 2n + 1) divides 2j − 1. We have

gcd(2i+j − 1, 2n + 1) =

{
2gcd(i+j,n) + 1 if ν(i+ j) > ν(n)

1 otherwise
.

Thus, when ν(i + j) ≤ ν(n) the congruence is always solvable. It turns out (details to
follow in the full paper) that to have x1, x2 < 2n−1 as required, we must have that both i
and j are odd and gcd(i+ j, n) = 2.

Next consider ν(i + j) > ν(n), in which case ν(gcd(i+ j, n)) = ν(n). We must have
that 2gcd(i+j,n) + 1 divides 2j − 1 which implies

2gcd(i+j,n) + 1 = gcd(2j − 1, 2gcd(i+j,n) + 1) =

{
2gcd(j,gcd(i+j,n)) + 1 if ν(j) > ν(n)

1 otherwise
.

Since 2gcd(i+j,n) + 1 cannot be equal to 1, the only possibility is to have ν(j) > ν(n) in
which case gcd(i+ j, n) = gcd(j, gcd(i+ j, n)) implying that gcd(i+ j, n) divides j.

Lemma 18. In CCRn, intracyclic pairs label edges between cycles of length 2n only.

Proof. The proof is very similar to that of Lemma 10, the equivalent result for PCRn.
The result for p1 we obtain following the same steps as in the case for PCRn, only this
time we have 2p1(x1 + 1) = x1 + 1, and we need to work modulo 2n in the exponents.

For p2, the LHS of (20) after multiplication by 2p2 becomes

−(2i+j − 1)2p2(2x1 + 1 + 1) ≡ −(2i+j − 1)(2x1 + 1 + 2p2 + 1− 1)
≡ 2j − 1 + (2i+j − 1)(2p2 − 1) mod 2n + 1 ,

where in the second step we used 2p2(2x1+1) = (2x1+1), and in the third we applied (20).
The rest is also identical to the PCRn case, again working modulo 2n in the exponents
instead of n.

Lemma 19. All intracyclic pairs in CCRn are disjoint.

Proof. The proof is almost identical to that of Lemma 11, the equivalent result for PCRn.
The only difference is that due to the modulus being 2n+1 instead of 2n−1, here we need
to work modulo 2n instead of n in the exponents. All other arguments are the same.

Corollary 20 ([3]). The maximum size any adjacency set can have in CCRn is 4.
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Proof. Suppose on the contrary that there exists an adjacency set in CCRn containing
more than four distinct elements, and consider five of them. Since extracyclic pairs exist in
CCRn, these five elements can belong to two different cycles, one of which must contain
at least three of them. But then, these three elements will pairwise form non-disjoint
intracyclic pairs, in contradiction to Lemma 19.

Corollary 21 ([3]). In CCRn, adjacency sets of size 4 label edges between cycles of length
2n only.

Proof. This is a direct consequence of Lemma 18 and Cor. 20.

Next, we consider extracyclic pairs. Using (16), (17) and (19), and rearranging, (7)
for CCRn becomes

(2i+j+2 − 1)(x1 + 1) ≡ 2i(2j+1 + 1) mod 2n + 1 . (21)

First, we note that when i = j = n− 1, both sides of the congruence become 0, meaning
that any x1 ∈ Z2n−1 is a solution. Using i = n − 1 and once again (16), (17) and (19),
Condition (b1) for CCRn yields

x1 + x2 ≡ 2n−1 − 1 mod 2n + 1 . (22)

This means that for each x in an adjacency set, 2n−1 − 1 − x, which is always distinct,
also belongs to the same adjacency set. In other words, every adjacency set has even
cardinality, as first noticed by Hauge [3]. Let intracyclic pairs x1, x2 and x3, x4 belong to
the same adjacency set. Suppose x3 = 2n−1− 1− x1 satisfies (20) for some exponent pair
(i′, j′). Straightforward simplifications yield

− 2(2i
′+j′ − 1)(x1 + 1) ≡ 2j

′ − 2i
′+j′ mod 2n + 1 . (23)

Multiplying both sides of this congruence by 2i+j − 1, applying (20) on the LHS, and
rearranging we obtain

2i+j+i
′+j′ + 2j + 2j

′ ≡ 2i+j+j
′
+ 2i

′+j′+j + 1 mod 2n + 1 . (24)

Working as we have done earlier, such as in the proof of Lemma 10, we obtain j′ = 2n− i
and i′ = 2n − j. Combining this with Remark 6 we obtain that adjacency sets of size 4
are characterised by the pairs of exponents (i, j), (2n− i, 2n−j), (j, i) and (2n−j, 2n− i).
The first two coincide with the other two when i = j (since 2n− j 6= i).

Theorem 22 ([3]). The number of adjacency sets of size 4 in CCRn is given by

c(n) =
1

4
h(n)φ(n) +

1

4

∑
d| n

2ν(n)

d6= n

2ν(n)

φ
( n

2ν(n)d

)( n

2ν(n)d
− 2
)

22ν(n)d−1 ,

where h(n) = −1 if n is odd and h(n) = (n− 2) if n is even.
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Proof. We have seen that adjacency sets of size 4 in CCRn correspond to pairs of intra-
cyclic pairs, or equivalently quadruples of the form (x1, x2, 2

n−1 − x1 − 1, 2n−1 − x2 − 1).
We begin by counting the number of suitable pairs of exponents (i, j) that render (20)
solvable and the corresponding suitable solutions. Recall that there are two cases for this.

The first is when ν(i+j) ≤ ν(n), both i and j are odd and gcd(i+j, n) = 2. Recall that
the last two conditions ensure that x1, x2 < 2n−1, and consequently the entire quadruple
is suitable. The last condition also implies that n must be even, and ν(i + j) = 1. By
the latter, the possibilities for i + j are even integers in the interval 1 ≤ i + j ≤ 2n − 1
(due to reduction modulo 2n in the exponents) such that gcd( i+j

2
, n) = 1. In other words,

i + j = 2kij for kij in the interval 1 ≤ kij ≤ n − 1 such that gcd (n, kij) = 1. There are
φ(n) of them. For each possible i+ j, the possibilities for i (and consequently j) are the
odd integers in the interval 1 ≤ i ≤ 2n− 1. There are n of them.

For each suitable i and j there is a single solution x1 to (20) given by

x1 + 1 = 2−1
(
2i+j − 1

)−1 (
2j − 1

)
mod 2n + 1 .

Since there is a single solution and by what we have seen earlier, when i = j the quadruple
reduces to the pair (x1, x2). Therefore, for each possible i+ j we need to exclude i+j

2
and

n+ i+j
2

from the possibilities for i. Hence the total number of solutions from this case is
(n− 2)φ(n).

The second case is when ν(i+j) > ν(n), ν(j) > ν(n) and gcd(i+ j, n) divides j. Since
gcd(i+ j, n) = 2ν(n) gcd

(
i+j

2ν(i+j)
, n
2ν(n)

)
, for any divisor d of n

2ν(n)
, 2ν(n)d is a possible gcd.

The possibilities for i+ j are integers in the interval 1 ≤ i+ j ≤ 2n− 1 (due to reduction
modulo 2n in the exponents) such that ν(i + j) > ν(n) and gcd

(
i+j

2ν(i+j)
, n
2ν(n)

)
= d. In

other words, i + j = 2ν(n)+1dkij for kij in the interval 1 ≤ kij ≤ n
2ν(n)d

− 1 such that

gcd
(

n
2ν(n)d

, kij
)

= 1. There are φ
(

n
2ν(n)d

)
of them.

The possibilities for j are multiples of 2ν(n)d excluding i+ j (as i 6= 0) in the interval
1 ≤ j ≤ 2n−1 such that ν(j) > ν(n). In other words, j = 2ν(n)+1dkj for kj in the interval
1 ≤ kj ≤ n

2ν(n)d
− 1 excluding i+j

2ν(n)+1d
. There are n

2ν(n)d
− 2 of them.

For each suitable d, i and j there are 2d + 1 solutions to (20) given by x1 = x0 − 1 +
2n+1

2ν(n)d+1
k, where k is an integer such that 0 ≤ k ≤ 2ν(n)d and

x0 = 2−1
(

2i+j − 1

2ν(n)d + 1

)−1(
2j − 1

2ν(n)d + 1

)
mod

2n + 1

2ν(n)d + 1
.

We are only interested in those solutions such that x1, x2 < 2n−1. Full details on this part
of the proof will be provided in the full paper.

Finally, putting everything together gives us the number of suitable solutions to (20).
The number of pairs of intracyclic pairs is one fourth of this number, something that
follows from our discussion just before this Theorem and the fact that if the congruence
is solvable for the pair of exponents (i, j) then it is also solvable for the pair (2n− i, 2n−
j).
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