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Abstract Boolean functions play an important role in coding theory and sym-
metric cryptography. In this paper, three classes of Boolean functions with six-
valued Walsh spectra are presented and their Walsh spectrum distributions are
determined. They are derived from three classes of bent functions by comple-
menting the values of the functions at three different points, where the bent func-
tions are the Maiorana-McFarland types, Dillon P S ap types and the monomial
form Trn

1(λxr(2m−1)), respectively. As an application, some classes of binary lin-
ear codes are constructed by using the functions we presented and point out these
codes can be used in secret sharing schemes with interesting access structure.
Keywords: Boolean function, bent function, six-valued Walsh spectra, Walsh
spectrum

1 Introduction
Boolean functions have wide applications in both symmetric cryptography and er-
ror correcting code. Over the past decades, various criteria related to cryptograph-
ically desirable Boolean functions have been proposed and studied extensively,
such as balancedness, high nonlinearity, correlation immunity, satisfiability of the
propagation criterion and so on.

The Walsh transform of Boolean functions is a very efficient tool to study
and analyze Boolean functions since many cryptographic properties of Boolean
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functions can be characterized by their Walsh transform values, see [3, 5, 20, 21,
22, 23] also for more details. For example, bent functions and plateaued functions
[2] can be described by their Walsh spectrum. More specifically, the first possesses
exactly two distinct Walsh transform values with maximal nonlinearity and the
latter functions are ones with exactly three distinct Walsh transform values, one
is zero and the other two have the same absolute values. The set of all Walsh
transform values of a Boolean function is called the Walsh spectrum, and if the
cardinality of the spectrum is t then we call it has t values of Walsh spectra.

Recall that bent functions were introduced by Rothaus [21] in 1976 but they
exist only in an even number of variables and are not balanced. To get balanced
functions with good nonlinearity in odd or even number of variables, Chee et al.
[5] and Zhang [25] generalized the bent functions to Semi-bent and Plateaued
functions, respectively. After that, in 2000 Pei et al. [20] discussed Boolean func-
tions with at most eight Walsh transform values. Later in 2011 Tu et al. [23] char-
acterized all Boolean functions with exactly two distinct Walsh transform values
in terms of their spectrum, and they pointed out that the Boolean functions with
exactly two distinct Walsh transform values were close to bent functions and affine
functions. For Boolean functions with three-valued or five-valued Walsh spectra
or more distinct Walsh transform values, there were many bent-like construction-
s [26]. Recently, in [22], some classes of Boolean functions with four-valued
Walsh spectra are presented by complementing the values of bent functions at two
points, one of which is zero and the other is nonzero, and their Walsh spectrum
distributions are determined finally.

Inspired by the previous works, in this paper, we present three classes of
Boolean functions with six-valued Walsh spectra, which are derived from ben-
t functions by complementing their values at the zero and another two nonzero
points, and determine their Walsh spectrum distributions with a similar method.
The first two classes are derived from the bent functions of the Maiorana-McFarland
and Dillon P S ap classes, and the third class comes from the monomial func-
tions Trn

1(λxr(2m−1)), where integers n = 2m and r is a positive integer such that
gcd(r, 2m +1) = 1 and λ is an element in finite field F2m .

The rest of the paper is organized as follows. In Section 2, we introduce some
notation and preliminary results on Boolean functions. In Section 3, we propose
the Boolean functions with six-valued Walsh spectra. In Section 4, we derive some
classes of linear codes from the Walsh spectrum of the functions we constructed
and examine the application of the codes. Section 5 concludes the paper.
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2 Preliminaries
Throughout this paper, Fn

2 denotes the n-dimensional vector space over F2 and Bn
be the set of all n-variable Boolean functions from Fn

2 to F2.
Any Boolean function f admits a representation as a squarefree polynomial in

n variables, called algebraic normal form (ANF)

f (x1, . . . ,xn) = ∑
u∈Fn

2

au

n

∏
i=1

xui
i , u = (u1,u2, . . . ,un), au,ui ∈ F2

where the sum is taken over F2, and the term
n
∏
i=1

xui
i is called monomial. The

algebraic degree deg( f ) of the Boolean function f equals the maximum degree of
those monomials whose coefficients are nonzero in its ANF and is referred to as
affine if it has algebraic degree at most 1.

The Walsh transform of f ∈ Bn is the integer valued function over Fn
2 defined

by
Wf (a) = ∑

x∈Fn
2

(−1) f (x)+a·x, a ∈ Fn
2

where a · x is the usual inner product of vectors. Moreover, the value Wf (a) is
called Walsh coefficient of f at a ∈ Fn

2 and the set of Walsh coefficients is called
the Walsh spectrum of f . In particular, if we denote the Hamming weight of f by
wt( f ), which define the cardinality of the set {x ∈ Fn

2 | f (x) 6= 0}, then we have
Wf (0) = 2n−2wt( f ) and wt( f ) = 2n−1− 1

2Wf (0).
For even n, if f ∈ Bn with Wash spectrum distribution as

Wf (a) =
{
−2n/2, 2n−1−2n/2−1 times,
2n/2, 2n−1 +2n/2−1 times,

then f is called a bent function. Bent functions always occur in pairs. In fact,
given a bent function f ∈ Bn, we define the dual function f̃ of f by

Wf (a) = 2n/2(−1) f̃ (a).

In other words, we consider the signs of the Walsh-coefficients of f . Due to the
involution law the Fourier transform is self-inverse, the dual of a bent function is
still a bent function and the dual of f̃ is equals to f .

We can naturally identify the vector space Fn
2 with the finite field F2n . As the

notion of a Walsh transform refers to a scalar product, it is convenient to choose
the isomorphism such that the canonical scalar product in Fn

2 coincides with the
canonical scalar product in F2n , which is the trace of the product: x · y = Trn

1(xy),
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where x,y∈F2n and Trn
1 denote the absolute trace function from F2n onto F2 given

by
Trn

1(x) = x+ x2 + . . .+ x2n−1
, for any x ∈ F2n.

Thus the Walsh transform of f on F2n is equivalently defined by

Wf (a) = ∑
x∈F2n

(−1) f (x)+Trn
1(ax),

for a ∈ F2n .
Another possible unique representation of a Boolean function f defined on Fn

2
is by means of trace function. In fact, any n-variable Boolean function can be
represented as follows

f (x) = ∑
j∈Γn

Trn j
1 (a jx j)+a0 +a2n−1x2n−1,

where Γn is the set of integers obtained by choosing one element in each cyclo-
tomic class C j = { j · 2t (mod 2n− 1) | t ∈ N}, n j is the size of C j and a j ∈ F2n j ,
as well as a0, a2n−1 ∈ F2. In particular, we call f (x) of the form Trn j

1 (a jx j) a
monomial function.

3 Boolean Functions with Six-Valued Walsh Spec-
tra Derived from bent Functions

In this section, we construct a function h starting from a given bent function f
modifying its image at three points and establish the relation of the Walsh spec-
trum values between them. Then, as an application of the result, we study the
Walsh transform of three classes of functions explicitly.

Below, we always let ε∈{0,1} and n= 2m≥ 6 with m being a positive integer.
Let f (x) be a bent function from Fn

2 to F2. For any two distinct elements ω,ν ∈
Fn

2\{0}, we define the Boolean function

h(x) =
{

f (x), if x ∈ Fn
2\{0,ω,ν},

f (x)+1, if x ∈ {0,ω,ν}. (1)

The following lemma describes the Walsh spectrum properties of the function
h(x) given in Eq.(1).

Lemma 1. The Wlash spectrum value of h(x) at u ∈ Fn
2 is given by

Wh(u) =Wf (u)−2((−1) f (0)+(−1) f (ω)+u·ω +(−1) f (ν)+u·ν).
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Proof. From the definition of the Walsh spectrum and h(x), it is easy to get
that

Wh(u) = ∑
x∈Fn

2

(−1)h(x)+u·x

= ∑
x∈Fn

2\{0,ω,ν}
(−1) f (x)+u·x + ∑

x∈{0,ω,ν}
(−1) f (x)+1+u·x

= ∑
x∈Fn

2

(−1) f (x)+u·x−2 ∑
x∈{0,ω,ν}

(−1) f (x)+u·x

= Wf (u)−2((−1) f (0)+(−1) f (ω)+u·ω +(−1) f (ν)+u·ν).

Thus, we finish the proof of the lemma. �
For any u ∈ Fn

2, we denote by f̃ (u) = ε, then it follows from the definition of
the dual function f̃ of f and Lemma 1 that the Walsh spectrum of the function
h(x) in Eq.(1) satisfies

Wh(u) =


(−1)ε2m−6, if u ·ω = f (ω), u ·ν = f (ν),
(−1)ε2m−2, if u ·ω− f (ω) 6= u ·ν− f (ν),
(−1)ε2m +2, if u ·ω = f (ω)+1, u ·ν = f (ν)+1,

(2)

if f (0) = 0, and otherwise

Wh(u) =


(−1)ε2m +6, if u ·ω = f (ω)+1, u ·ν = f (ν)+1,
(−1)ε2m +2, if u ·ω− f (ω) 6= u ·ν− f (ν),
(−1)ε2m−2, if u ·ω = f (ω), u ·ν = f (ν).

Below we can always assume that the bent function f (x) satisfies f (0) = 0, since
we may consider the function f (x)+1 if f (0) = 1.

In order to determine the Walsh spectrum distribution of h(x), we need to
introduce the following notation

Sε0 = {u ∈ Fn
2 | f̃ (u) = ε, ω ·u = 0, ν ·u = 0},

Sε1 = {u ∈ Fn
2 | f̃ (u) = ε, ω ·u = 0, ν ·u = 1},

Sε2 = {u ∈ Fn
2 | f̃ (u) = ε, ω ·u = 1, ν ·u = 0},

Sε3 = {u ∈ Fn
2 | f̃ (u) = ε, ω ·u = 1, ν ·u = 1}.

Denote the cardinalities of a set S by |S|. Clearly, we have

|S0 j|= 2n−2−|S1 j|, 0≤ j ≤ 3, (3)

and
|S10|+ |S11|+ |S12|+ |S13|= wt( f̃ ) = 2n−1−2m−1 (4)
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from the bentness of f̃ .
Thus, from the definition of |Sε j|, we have the following equivalent form of

Eq.(2).
If f (ω) = f (ν), then

Wh(u) =


(−1)ε2m−6, A0 times,
(−1)ε2m−2, |Sε1|+ |Sε2| times,
(−1)ε2m +2, A1 times,

(5)

where A0 =

{
|Sε0|, if f (ν) = 0,
|Sε3|, if f (ν) = 1, and A1 =

{
|Sε3|, if f (ν) = 0,
|Sε0|, if f (ν) = 1.

If f (ω) 6= f (ν), then

Wh(u) =


(−1)ε2m−6, B0 times,
(−1)ε2m−2, |Sε0|+ |Sε3| times,
(−1)ε2m +2, B1 times,

(6)

where B0 =

{
|Sε2|, if f (ν) = 0,
|Sε1|, if f (ν) = 1, and B1 =

{
|Sε1|, if f (ν) = 0,
|Sε2|, if f (ν) = 1.

In the rest of this section, we will construct three classes of Boolean functions
from known bent functions and apply Lemma 1, and Eq.(2) or Eqs.(5) and (6) to
determine the spectrum distribution of the new functions.

3.1 The Maiorana-McFarland Class
In this subsection, denote by Fn

2 = {(x,y) | x,y ∈ Fm
2 }. With the conclusion above,

we will obtain the Walsh spectrum of the Boolean functions derived from the
Maiorana-McFarland function class, which is defined by

f (x,y) = x ·π(y)+g(y),

where π is any permutation on Fm
2 and g is a Boolean function on Fm

2 . It has been
proved that such function is bent and the dual of f (x,y) is f̃ (x,y) = y ·π−1(x)+
g(π−1(x)), where π−1 is the inverse permutation of π.

Let a,b,c, and d ∈ Fm
2 with b 6= d and all of them are nonzeros. If we replace

f by the Maiorana-McFarland function f (x,y), replace u, ω and ν by (u,v), (a,b),
and (c,d) in Eq.(1), respectively, then Eq.(1) becomes

h(x,y) =
{

f (x,y), if (x,y) ∈ Fm
2 ×Fm

2 \{(0,0),(a,b),(c,d)},
f (x,y)+1, if (x,y) ∈ {(0,0),(a,b),(c,d)}. (7)

For the function h(x,y) defined by Eq.(7), we have the following theorem.
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Theorem 2. Let g(0) = 0 and π(0) = 0. The spectrum distribution of the function
h(x,y) defined by Eq.(7) is given as

Wh(u,v) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−1 times,
(−1)ε2m−2, 2n−2 times,
(−1)ε2m +2, 2n−3 times,

if g(b+d) = a ·π(b)+g(b)+a ·π(b+d)+ c ·π(d)+g(d)+ c ·π(b+d), and

Wh(u,v) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−2 times,
(−1)ε2m−2, 2n−2 +(−1)ε2m−1 times,
(−1)ε2m +2, 2n−3− (−1)ε2m−2 times,

otherwise, where ε ∈ {0,1}.

Proof. According to Lemma 1 and Eq.(2), to determine the spectrum distribu-
tion of the function h(x,y), we need to examine the number of (u,v) ∈ Fm

2 such
that (u,v) · (a,b)− f (a,b) = (u,v) · (c,d)− f (c,d) = 0 or 1, and (u,v) · (a,b)−
f (a,b) 6= (u,v) · (c,d)− f (c,d).

We first figure out the number of (u,v) ∈ Fm
2 such that Wh(u,v) = 2m−6 and

denote it by N. Note that g(0) = π(0) = 0, thus, it suffices to calculate the number
of solutions of the following equation system π−1(u) · v = g(π−1(u)),

b · v = a ·π(b)+g(b)+a ·u,
d · v = c ·π(d)+g(d)+ c ·u.

(8)

To solve the above equations system, we divide the discussion into four cases.
Case 1: If π−1(u) = 0, i.e. u = 0, Eq.(8) can be reduced to{

b · v = a ·π(b)+g(b),
d · v = c ·π(d)+g(d). (9)

Clearly, N = 2m−2.
Case 2: If π−1(u) ∈ {b,d}, similar to the proof of Case 1, we get that N =

2m−2.
Case 3: If π−1(u) = b+d, Eq.(8) becomes

(b+d) · v = g(b+d),
b · v = a ·π(b)+g(b)+a ·π(b+d),
d · v = c ·π(d)+g(d)+ c ·π(b+d).

(10)

It is obvious that the number of (u,v) satisfying Eq.(10) is 2m−2 when g(b+d) =
a ·π(b)+g(b)+a ·π(b+d)+ c ·π(d)+g(d)+ c ·π(b+d), and is 0 otherwise.
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Case 4: If π−1(u) /∈ {0,b,d,b + d}, π−1(u), b and d are linear indepen-
dent, then for fixed u, the number of v satisfying Eq.(8) is 2m−3, and thus N =
2m−3(2m−4) = 2n−3−2m−1.

From all the discussion above, we obtain the total number of (u,v) such that
Wh(u,v) = 2m−6 is

2m−2 +2 ·2m−2 +2m−2 +2n−3−2m−1 = 2n−3 +2m−1,

when g(b+d) = a ·π(b)+g(b)+a ·π(b+d)+ c ·π(d)+g(d)+ c ·π(b+d), and
is 2m−2 +2 ·2m−2 +0+2n−3−2m−1 = 2n−3 +2m−2 otherwise.

In a similar manner, we can get the spectrum distribution of the function
h(x,y). Thus we complete the proof of the theorem. �

3.2 Dillion P S ap class
In this subsection, we will consider the Walsh spectrum of the Boolean function
derived from Dillion P S ap class. We begin this subsection by recalling Dillion
P S ap class.

Similar as in Section 3.1, we regard F2n as a two-dimensional vector space
over F2m . Dillon P S ap class functions have the form f (x,y) = g(xy2m−2), or ex-
plicitly

f (x,y) =
{

0, if y = 0,
g(x

y), if y 6= 0, (11)

where x,y ∈ F2m and g is a balanced Boolean function from F2m to F2 with g(0) =
0. It is known that any such function is bent, and the dual of f (x,y) is f̃ (x,y) =
g(yx2m−2), see [2] for more details.

Let a,b,c, and d ∈ F∗2m with ab−1 6= cd−1. If we replace f by Dillion P S ap
class f (x,y), replace u, ω and ν by (u,v), (a,b), and (c,d) in Eq.(1), respectively,
then Eq.(1) becomes

h(x,y) =


f (x,y), if (x,y) ∈ F2m×F2m

\{(0,0),(a,b),(c,d)},
f (x,y)+1, if (x,y) ∈ {(0,0),(a,b),(c,d)}.

(12)

For h(x,y) defined above, we have the following theorem.

Theorem 3. Let a,b,c, and d ∈ F∗2m with ab−1 6= cd−1. The spectrum distribution
of the function h(x,y) defined by Eq.(12) satisfies

(i) if f (a + c,b + d) = 0 and f (a,b) = f (c,d) or f (a + c,b + d) = 1 and
f (a,b) 6= f (c,d), then

Wh(u,v) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−1 times,
(−1)ε2m−2, 2n−2 times,
(−1)ε2m +2, 2n−3 times,
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(ii) if f (a+ c,b+ d) = 0 and f (a,b) 6= f (c,d) or f (a+ c,b+ d) = 1 and
f (a,b) = f (c,d), then

Wh(u,v) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−2 times,
(−1)ε2m−2, 2n−2 +(−1)ε2m−1 times,
(−1)ε2m +2, 2n−3− (−1)ε2m−2 times.

Proof. According to Lemma 1 and Eqs.(5) and (6), to determine the spectrum
distribution of the function h(x,y), we need to examine the values of |Sε j| for
ε ∈ {0,1} and 0≤ j ≤ 3.

It is trivial that F2m×F2m is the union of the 2m +1 m-dimensional subspaces
Ue = {(x,ex) | x ∈ F2m} and V0 = {(0,y) | y ∈ F2m} with e ∈ F2m . Note that any
two of these subspaces intersection at (0,0) ∈ F2m×F2m .

Below we only prove the theorem under the condition f (a+c,b+d) = 0 since
the case for f (a+ c,b+d) = 1 can be proved with a similar idea.

We first determine the cardinality |S13| of

S13 = {(u,v) ∈ F2
2m| f̃ (u,v) = 1,Trm

1 (au+bv) = 1,Trm
1 (cu+dv) = 1},

for the case of f (a,b) = f (c,d) = 1.
From the definitions of g and f̃ (x,y), one can find that the restriction of f̃ (x,y)

to Ue is g(e) and to V0 is 0. Meanwhile, if (u,v) ∈ S1 j, then there exist some
e ∈ F∗2m such that (u,v) ∈Ue and g(e) = 1. Thus, |S13| is equal to the total number
of (u,v) ∈Ue for e ∈ F2m satisfying the following equations

g(e) = 1,
Trm

1 ((a+be)u) = 1,
Trm

1 ((c+de)u) = 1.
(13)

Since f (a,b) = f (c,d) = 1 means that g(ab−1) = g(cd−1) = 1, in order to
determine |S13|, we divide the discussion into the following two steps.

(1) If e = ab−1 or e = cd−1, Eq.(13) has no solution in F2m .
(2) If e 6= ab−1 and e 6= cd−1, since the restriction f (a+ c,b+ d) = 0 means

that a+be 6= c+de holds for all g(e) = 1, then for any fixed e ∈ F2m , the number
of solutions to Eq.(13) is

N = ∑
u∈F2m

(
1− (−1)Trm

1 ((a+be)u)

2
)(

1− (−1)Trm
1 ((c+de)u)

2
)

=
1
4
( ∑

u∈F2m

1− ∑
u∈F2m

(−1)Trm
1 ((a+be)u)− ∑

u∈F2m

(−1)Trm
1 ((c+de)u)

+ ∑
u∈F2m

(−1)Trm
1 ((a+be)u)+Trm

1 ((c+de)u))

= 2m−2.
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Then it follows from the balancedness of g and the arguments above that |S13| =
2m−2(2m−1−2) = 2n−3−2m−1.

With a similar proof idea, one can get |S13| for other values of f (a,b) and
f (c,d), and so we have

|S13|=


2n−3−2m−1, if f (a,b) = f (c,d) = 1,
2n−3, if f (a,b) = f (c,d) = 0,
2n−3−2m−2, if f (a,b) 6= f (c,d).

The determination of |S11| for

S11 = {(u,v) ∈ F2m×F2m | f̃ (u,v) = 1,Trm
1 (au+bv) = 0,Trm

1 (cu+dv) = 1}
is very similar to that of |S13|, we only present a sketch here. |S11| is equal to the
number of solutions to equations

g(e) = 1,
Trm

1 ((a+be)u) = 0,
Trm

1 ((c+de)u) = 1.
(14)

If f (a,b) = f (c,d) = 1, we divide the discussion into three steps.
(1) If e = ab−1, there are 2m−1 many u satisfying Eq.(14).
(2) If e = cd−1, there is no solution.
(3) If e 6= ab−1 and e 6= cd−1, since f (a+ c,b+ d) = 0, then for any fixed

e ∈ F2m , the number of solutions to Eq.(14) is

N = ∑
u∈F2m

(
1+(−1)Trm

1 ((a+be)u)

2
)(

1− (−1)Trm
1 ((c+de)u)

2
)

= 2m−2.

Thus, we have |S11|= 2m−2(2m−1−2)+2m−1 = 2n−3.
Similarly, we could determine the cardinality of S11 for the other cases, and

we get

|S11|=
{

2n−3, if f (a,b) = f (c,d),
2n−3 +(−1)ε2m−2, if f (a,b) 6= f (c,d) = ε.

With a similar idea, we have

|S12|=
{

2n−3, if f (a,b) = f (c,d),
2n−3− (−1)ε2m−2, if f (a,b) 6= f (c,d) = ε.

Thus, by Eq.(4), we have

|S10|=


2n−3, if f (a,b) = f (c,d) = 1,
2n−3−2m−1, if f (a,b) = f (c,d) = 0,
2n−3−2m−2, if f (a,b) 6= f (c,d).

Combining Eqs.(3), (5) and (6) and the above enumeration, we finish the proof
of the theorem. �
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3.3 The Monomial Function Trn
1(λxr(2m−1))

In this subsection, we will present a class of Boolean functions with six-valued
Walsh spectra which are derived from the bent function f (x) = Trn

1(λxr(2m−1)),
where r is a positive integer such that gcd(r,2m + 1) = 1 and λ ∈ F2m with K-

loosterman sums Km(λ) = ∑
x∈F2m

(−1)Trm
1 (λx+x2m−1−1) = 0 [4], and in such case the

dual of f (x) is itself. We should mention that Trn
1(λxr(2m−1)) is a known class of

monomial functions with two or three-valued Walsh spectra and have tight con-
nection with Kloosterman sums, which have been studied extensively by many
researchers, e.g., Charpin and Gong [4], Leander [13], and Mesnager [16].

Let b,c ∈ F∗2n with b 6= c. Define Boolean function h(x) from F2n to F2 by

h(x) = f (x)+ x2n−1 +((x+b)(x+ c))2n−1,

i.e.

h(x) =
{

f (x), if x ∈ F∗2n\{b,c},
f (x)+1, if x ∈ {0,b,c}. (15)

For h(x) defined above, we have the following.

Theorem 4. With the notation as above. Suppose (b,c) ∈ µ0F∗2m × µ0F∗2m , where
b 6= c and µ0 ∈ {x ∈ F2n | x2m+1 = 1}, then h(x) defined in Eq.(15) is a function
with six-valued Walsh spectra and its spectrum distribution is

Wh(u) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−1 times,
(−1)ε2m−2, 2n−2 times,
(−1)ε2m +2, 2n−3 times,

if f (b) = 0, and

Wh(u) =


(−1)ε2m−6, 2n−3 +(−1)ε2m−2 times,
(−1)ε2m−2, 2n−2 +(−1)ε2m−1 times,
(−1)ε2m +2, 2n−3− (−1)ε2m−2 times,

if f (b) = 1.

Proof. To determine the Walsh spectrum distribution of h(x), we first introduce
the polar decomposition of the elements in F∗2n . As a cyclic multiplicative group
of order 2n−1, F∗2n is a direct product of its two subgroups of orders 2m +1 and
2m−1, respectively, and the two subgroups are given by U = {x∈F2n | x2m+1 = 1}
and F∗2m . Thus, any element x of F∗2n has a unique polar decomposition of the
form x = µy, where µ ∈U and y ∈ F∗2m , and more precisely, µ = x(2

m−1)2m−1
and

y = x(2
m+1)2m−1

.
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Similarly, we can rewrite b,c ∈ µ0F∗2m as b = µ0y0, c = µ0y1, where µ0 =

b(2
m−1)2m−1 ∈U , y0 = b(2

m+1)2m−1
, and y1 = c(2

m+1)2m−1 ∈ F∗2m , then we have

Trn
1(bx) = Trm

1 ((µ0µ+(µ0µ)−1)y0y),

and Trn
1(cx) = Trm

1 ((µ0µ+(µ0µ)−1)y1y).
Now we are ready to examine the values of |Sε j| for 0 ≤ j ≤ 3. We first

calculate |S13|, i.e., the number of x = µy ∈ F∗2n with µ ∈U and y ∈ F∗2m satisfying
S13 which is given as 

f (µ) = 1,
Trm

1 ((µ0µ+(µ0µ)−1)y0y) = 1,
Trm

1 ((µ0µ+(µ0µ)−1)y1y) = 1.
(16)

To solve Eq.(16), we proceed in the following steps.
(1) If µ0µ = 1, Eq.(16) has no solution.
(2) If µ0µ 6= 1, there are 2m−2 y satisfy Eq.(16). So we only need to examine

the number of µ ∈U such that µ0µ 6= 1 and f (µ) = 1, which we denote by N. Put
T = {µ ∈U | f (µ) = 1}. Note the fact that f (x) is constant on each coset µF∗2m

since f (x) = f (µy) = f (µ), hence, |T |= wt( f )/(2m−1) = 2m−1. If f (µ−1
0 ) = 0,

then µ−1
0 6∈ T , so µ0µ 6= 1 holds for all µ ∈ T , and thus N = 2m−1. If f (µ−1

0 ) = 1,
that is µ−1

0 ∈ T , so µ0µ 6= 1 holds for all µ ∈ T \{µ−1
0 }, and thus, N = 2m−1−1.

Combining the arguments above, we get

|S13|=
{

2m−22m−1 = 2n−3, if f (µ−1
0 ) = 0,

2m−2(2m−1−1) = 2n−3−2m−2, if f (µ−1
0 ) = 1.

With a similar argument, we have |S11|= |S12|= |S13|, and then by Eq.(4),

|S10|=
{

2n−3−2m−1, if f (µ−1
0 ) = 0,

2n−3 +2m−2, if f (µ−1
0 ) = 1.

It is clear to see that
f (µ−1

0 ) = f (b−1),

then we have f (b) = f (b−1) for all b ∈ µ0F∗2m by the definition of f (x).
Combining Eqs.(3), (5) and (6) and the arguments above, we finish the proof

of the theorem. �

4 Application
In this section, we will give some applications by using the Walsh spectrum value
of the new Boolean functions. We first introduce some notation and preliminary
results on linear codes.
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An [n,k,δ] linear code C over F2 is a k-dimensional subspace of Fn
2 with min-

imum Hamming distance δ. Let Ai be the number of codewords with Hamming
weight i in a code C . The weight enumerator of C is defined by 1+A1z+A2z2 +
. . .+Anzn, and the sequence (1,A1, . . . ,An) is called the weight distribution of the
code C .

A classical construction of linear codes is based on the defining set, that is, let
defining set D

D = {d1,d2, . . . ,dn} ⊆ F2n.

The linear code CD of length n over F2 is defined by

CD = {(Trn
1(xd1),Trn

1(xd2), . . . ,Trn
1(xdn)) : x ∈ F2n}. (17)

For a Boolean function f from F2n to F2, the support of f is defined as

D f = {x ∈ F2n : f (x) = 1}, (18)

and we denote by n f = |D f |. In the following we will study the relationship
between the Boolean function and the binary linear code CD f with length n f and
dimension at most n.

The following theorem is well known [9] and it implies the relationship be-
tween the weight distribution of a linear code and the Walsh spectrum distribution
of a Boolean function.

Theorem 5. Let f be a function from F2n to F2 and n f the cardinality of the
support of f . If 2n f +Wf (ω) 6= 0 for all ω ∈ F∗2n , then CD f is a binary code
with the parameter [n f ,m], and its weight distribution is given by the following
multiset:

{{
2n f +Wf (ω)

4
: ω ∈ F∗2n}}∪{{0}}.

Next, we will apply Theorem 5 to construct linear codes from the three classes
of Boolean functions with six Walsh spectrum. Without loss of generality, we
consider the function h(x) given in Theorem 4. By the definition of h(x), we have
nh ∈ {2n−1−2

n
2−1−1,2n−1−2

n
2−1 +1,2n−1−2

n
2−1 +3}, and thus it is obvious

that 2nh +Wh(ω) 6= 0 for all ω ∈ F∗2n .

Theorem 6. If f (b) = 1, then the weight distribution of the code CD f with the
parameter [2n−1−2

n
2−1 +1−2 f (c),n] is shown in Table 1. If f (b) = 0, then the

weight distribution of the code CD f with the parameter [2n−1−2
n
2−1+3−2 f (c),n]

is shown in Table 2.
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Table 1: The weight distribution of CD f when f (b) = 1

Weight Multiplicity

0 1
2n−2−1− f (c) 2n−3 +2

n
2−2

2n−2−2
n
2−1−1− f (c) 2n−3−2

n
2−2+ f (c)

2n−2− f (c) 2n−2 +2
n
2−1

2n−2−2
n
2−1− f (c) 2n−2−2

n
2−1

2n−2 +1− f (c) 2n−3−2
n
2−2−1

2n−2−2
n
2−1 +1− f (c) 2n−3 +2

n
2−2

Table 2: The weight distribution of CD f when f (b) = 0

Weight Multiplicity

0 1
2n−2− f (c) 2n−3 +2

n
2−1−1

2n−2−2
n
2−1− f (c) 2n−3−2

n
2−1

2n−2 +1− f (c) 2n−2

2n−2−2
n
2−1 +1− f (c) 2n−2

2n−2 +2− f (c) 2n−3

2n−2−2
n
2−1 +2− f (c) 2n−3

Let wmin and wmax denote the minimum and maximum non-zero weight of
linear code CD f , respectively. When n≥ 6, the codes [2n−1−2

n
2−1−1,n], [2n−1−

2
n
2−1 +1,n], [2n−1−2

n
2−1 +3,n] all have

wmin

wmax
>

1
2
.

From the results in [1] these codes are minimal. Minimal linear codes could be
decode with the minimum distance decoding method, and have applications in
secret sharing [1].

5 Conclusion
In this paper, we presented three classes of Boolean functions with six-valued
Walsh spectra by modifying bent functions by complementing their values at the
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zero point and other two nonzero points. The Walsh spectrum distribution of these
classes of functions were also determined. Results shows that all the new Boolean
functions possess the same Walsh spectrum distribution. As applications of the
Walsh spectrum of the Boolean function we presented, some classes of binary lin-
ear codes were constructed, which can be used to construct secret sharing schemes
with interesting access structure. Furthermore, all the codes we constructed are
new according to the code table [11].
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