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On −1-differential uniformity of ternary APN
power functions

Haode Yan

Abstract

Very recently, a new concept called multiplicative differential and the corresponding c-differential uniformity
were introduced by Ellingsen et al. A function F(x) over finite field GF(pn) to itself is called c-differential
uniformity δ, or equivalent, F(x) is differentially (c,δ) uniform, when the maximum number of solutions x∈GF(pn)
of F(x+ a)−F(cx) = b, a,b,c ∈ GF(pn), c 6= 1 if a = 0, is equal to δ. The objective of this paper is to study
the −1-differential uniformity of ternary APN power functions F(x) = xd over GF(3n). We obtain ternary power
functions with low −1-differential uniformity, and some of them are almost perfect −1-nonlinear.

Index Terms

c-differentials, differential uniformity, almost perfect c-nonlinearity

I. INTRODUCTION

Differential cryptanalysis ([4], [5]) is one of the most fundamental cryptanalytic approaches targeting
symmetric-key primitives. Such a cryptanalysis approach has attracted a lot of attention because it was
proposed to be the first statistical attack for breaking the iterated block ciphers [4]. The security of
cryptographic functions regarding differential attacks was widely studied in the past 30 years. This
type of security is quantified by the so-called differential uniformity of the substitution box (S-box)
used in the cipher [26]. In [3], a new type of differential was proposed. The authors utilized modular
multiplication as a primitive operation, which extends the type of differential cryptanalysis. It is necessary
to start the theoretical analysis of an (output) multiplicative differential. Motivated by practical differential
cryptanalysis, Ellingsen et al. recently coined a new concept called multiplicative differential and the
corresponding c-differential uniformity ([16]).

Definition 1. Let GF(pn) denote the finite field with pn elements, where p is a prime number and n is a
positive integer. For a function F from GF(pn) to itself, a,c ∈GF(pn), the (multiplicative) c derivative of
F with respect to a is define as

cDaF(x) = F(x+a)− cF(x), for all x.

For b∈GF(pn), let c∆F(a,b) = #{x∈GF(pn) : F(x+a)−cF(x) = b}. We call c∆F =max{c∆F(a,b) : a,b∈
GF(pn),and a 6= 0 if c = 1} the c-differential uniformity of F. If c∆F = δ, then we say F is differentially
(c,δ)-uniform.

If the c-differential uniformity of F equals 1, then F is called a perfect c-nonlinear (PcN) function.
PcN functions over odd characteristic finite fields are also called c-planar functions. If the c-differential
uniformity of F is 2, then F is called an almost perfect c-nonlinear (APcN) function. It is easy to see that,
for c = 1 and a 6= 0, the c-differential uniformity becomes the usual differential uniformity, and the PcN
and APcN functions become perfect nonlinear (PN) function and almost perfect nonlinear function (APN)
respectively. These functions are of great significance in both theory and practical applications. For even
characteristic finite fields, APN functions have the lowest differential uniformity. Known APN functions
over even characteristic finite fields were presented in [1], [12], [13], [14], [17], [22], [23], [25]. For the
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TABLE I
POWER FUNCTIONS F(x) = xd OVER GF(pn) WITH LOW c-DIFFERENTIAL UNIFORMITY

p d condition c∆F References
any 2 c 6= 1 2 [16]
any pn−2 c = 0 1 [16]
2 2n−2 c 6= 0, Trn(c) = Trn(c−1) = 1 2 [16]
2 2n−2 c 6= 0, Trn(c) = 0 or Trn(c−1) = 0 3 [16]

odd pn−2 c = 4, c = 4−1 or χ(c2−4c) = χ(1−4c) =−1 2 [16]
odd pn−2 c 6= 0,4,4−1, χ(c2−4c)=1 or χ(1−4c) = 1 3 [16]

3 (3k +1)/2 c =−1, n/gcd(k,n) = 1 1 [16]
odd (p2 +1)/2 c =−1, n odd 1 [6]
odd p2− p+1 c =−1, n = 3 1 [6]

2 2k +1 c 6= 1, gcd(k,n) = 1 3 [27]
odd pk +1 1 6= c ∈ GF(p), gcd(k,n) = 1 2 [27]
odd (pk +1)/2 c =−1, k/gcd(k,n) is even 1 [27]

3 (3k +1)/2 c =−1, k odd, gcd(k,n) = 1 2 [27]
any (2pn−1)/3 c 6= 1, pn ≡ 2(mod 3) ≤ 3 [27]
odd (pn +1)/2 c 6=±1 ≤ 4 [27]
odd (pn +1)/2 c 6=±1, χ( 1−c

1+c ) = 1, pn ≡ 1(mod 4) ≤ 2 [27]
> 3 (pn +3)/2 c =−1, pn ≡ 3(mod 4) ≤ 3 [27]
> 3 (pn +3)/2 c =−1, pn ≡ 1(mod 4) ≤ 4 [27]
odd (pn−3)/2 c =−1 ≤ 4 [27]

• Trn(·) denotes the absolute trace mapping from GF(2n) to GF(2).
• χ(·) denotes the quadratic multiplicative character on GF(pn)∗.

known results on PN and APN functions over odd characteristic finite fields, the readers are referred to
[8], [15], [10], [11], [19], [20], [24], [28], [29].

Because of the strong resistance to differential attacks and the low implementation cost in a hardware
environment, power function F(x) = xd (i.e., monomials) with low differential uniformity can serve as a
good candidate for the design of S-boxes. Moreover, power functions with low differential uniformity may
also introduce some unsuitable weaknesses within a cipher [2], [21], [9], [7]. For instance, a differentially
4-uniform power function, which is extended affine EA-equivalent to the inverse function x 7→ x2n−2 over
GF(2n) with even n, is employed in the AES (advanced encryption standard). A nature question one
would ask is whether the power functions have good c-differential properties. In [16], the authors studied
the c-differential uniformity of the well-known inverse function F(x) = xpn−2 over GF(pn) for both even
and odd prime p. It was shown that F(x) is PcN when c = 0, F(x) is APcN with some conditions of
c and F(x) is differentially (c,3)-uniform otherwise. This result illustrates that PcN functions can exist

for p = 2. For PcN functions x
3k+1

2 over GF(3n) and c = −1, a sufficient and necessary condition was

presented in [16]. In [6], it was shown that for odd p, n and c = −1, x
p2+1

2 over GF(pn) and xp2−p+1

over GF(p3) are PcN functions. In [27], it was proved that the Gold function over even characteristic
finite field is differentially (c,3)-uniform for c 6= 1. Some PcN and APcN functions were also obtained.
Moreover, for c-differential uniformity of power function F(x) = xd over GF(pn) with c 6= 1, the following
lemma was introduced.

Lemma 1 ([27]). Let F(x) = xd be a power function over GF(pn). Then

c∆F = max
{
{c∆F(1,b) : b ∈ GF(pn)}∪{gcd(d, pn−1)}

}
.

As summarized in Table I, c =−1 is a very special case and sometimes the −1-differential uniformity
is lower than c-differential uniformity for other c ∈ GF(pn). The perfect −1-nonlinear function was also
called quasi-planar function [6]. In this paper, we study the −1-differential uniformity of F(x) when F(x)
is a ternary APN power function. Lemma 1 indicates that to determine the −1-differential uniformity of
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TABLE II
RESULTS IN THIS PAPER

p d condition c∆F

3 (3
n+1

2 −1)/2 c =−1, n≡ 1(mod 4) ≤ 2
3 (3

n+1
2 −1)/2+(3n−1)/2 c =−1, n≡ 3(mod 4) ≤ 2

3 (3n+1−1)/8 c =−1, n≡ 1(mod 4) ≤ 2
3 (3n+1−1)/8+(3n−1)/2 c =−1, n≡ 3(mod 4) ≤ 2
3 (3

n+1
2 −1)/2 c =−1, n≡ 3(mod 4) ≤ 4

3 (3
n+1

2 −1)/2+(3n−1)/2 c =−1, n≡ 1(mod 4) ≤ 4
3 (3n+1−1)/8 c =−1, n≡ 3(mod 4) ≤ 4
3 (3n+1−1)/8+(3n−1)/2 c =−1, n≡ 1(mod 4) ≤ 4
3 (3

n+1
4 −1)(3

n+1
2 +1) c =−1, n≡ 3(mod 4) ≤ 4

3 (3n +1)/4+(3n−1)/2 c =−1, n odd ≤ 4

power functions, the following −1-differential equation needs to be studied.

∆(x) = (x+1)d + xd = b.

Let δ(b) = #{x∈GF(3n) | ∆(x) = b}. The maximum value of {δ(b) | b∈GF(3n)} plays an important role
in studying the −1-differential uniformity of F(x). In the rest of this paper, we consider several classes
of ternary APN power functions. It turns out that they are with low −1-differential uniformity, and some
of them are almost perfect −1-nonlinear. The results in this paper are shown in Table II.

II. C-DIFFERENTIAL UNIFORMITY OF x
3

n+1
2 −1
2 OVER GF(3n)

In this section, let F(x) = xd be a power function over GF(3n), where n≡ 1(mod 4) and d = 1
2(3

n+1
2 −1).

It was proved in [15] that F(x) is an APN function. We consider the −1-differential uniformity of F(x)
as follows.

Theorem 2. Let F(x) = xd be a power function over GF(3n), where n≡ 1(mod 4) and d = 1
2(3

n+1
2 −1).

We have −1∆F ≤ 2.

Proof: Let m = n+1
2 . Note that 2(3m + 1)d− 3(3n− 1) = 2 and d is odd when n ≡ 1(mod 4), then

gcd(d,3n−1) = 1, i.e., F(x) is a permutation on GF(3n). For b ∈GF(3n), we consider the −1-differential
equation

∆(x) = (x+1)d + xd = b. (1)

Let ux+1 = (x+1)d and ux = xd . For x 6= 0, note that

u3m+1
x = x

3n+1−1
2 = χ(x)x. (2)

Herein and hereafter, let χ denote the quadratic multiplicative character on GF(3n)∗. Let x ∈ GF(3n) \
{0,−1} be a solution of (1) for fixed b ∈GF(3n), then ux,ux+1 6= 0. Taking the (3m+1)th power on both
sides of ux+1 =−ux +b, we have

bu3m

x +b3m
ux =−χ(x+1)(x+1)+χ(x)x+b3m+1. (3)

For equation (3), we distinguish the following four cases.
Case I. χ(x+1) = χ(x) = 1.
In this case, we have bu3m

x + b3m
ux = b3m+1− 1 from (3). Since the mapping ux 7→ bu3m

x + b3m
ux is

bijective on GF(3n), we can find a unique ux. Because F(x) is a permutation, a unique x can be found
from the ux. This case has at most one solution.

Case II. χ(x+1) = χ(x) =−1.
This case has at most one solution. The discussion is similar to that of Case I and we omit it.
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Case III. χ(x+ 1) = 1,χ(x) = −1. From (3), we have bu3m

x + b3m
ux = x+ b3m+1− 1 in this case, and

then we have
(ux +b)3m+1 =−b3m+1−1 (4)

by (2). If there are two distinct solutions in this case, namely x3 and x′3, then ux3 and ux′3
satisfy (4) with

χ(x3 + 1) = χ(x′3 + 1) = 1 and χ(x3) = χ(x′3) = −1. Consequently (ux3 + b)3m+1 = (ux′3
+ b)3m+1 can be

obtained from (4). Then we have ux3 +b = −(ux′3
+b) since gcd(3m +1,3n−1) = 2 and x3 6= x′3, which

leads to ux3 = b− ux′3
= ux′3+1. However, the above conclusion contradicts to χ(ux3) = χ(x3) = −1 and

χ(ux′3+1) = χ(x′3 +1) = 1. We conclude that Case III has at most one solution.
Case IV. χ(x+ 1) = −1,χ(x) = 1. In this case we have bu3m

x + b3m
ux = −x+ b3m+1 + 1 from (3), and

then
(ux +b)3m+1 =−b3m+1 +1 (5)

by (2). Similar to Case III, we can obtain that this case has at most one solution.
Next we will prove that for fixed b, (1) cannot have solution in Case I and Case II simultaneously.

Otherwise, suppose that x1 and x2 are solutions of (1) in Case I and Case II with χ(x1 +1) = χ(x1) = 1
and χ(x2 + 1) = χ(x2) = −1 respectively. Then we have bu3m

x1
+ b3m

ux1 = b3m+1− 1 and bu3m

x2
+ b3m

ux2 =

b3m+1+1, where ux1 and ux2 we defined before. Now we have b(ux1 +ux2)
3m
+b3m

(ux1 +ux2) =−b3m+1 and
the consequent ux1 +ux2 = b. From (1), we can obtain ux2 = ux1+1, which contradicts to χ(ux2)= χ(x2)=−1
and χ(ux1+1) = χ(x1 +1) = 1. Therefore, we conclude that (1) has at most one solution in Cases I and II
for fixed b ∈ GF(3n).

Then we prove that for fixed b, (1) cannot have solution in Case III and Case IV simultaneously.
Otherwise, suppose that x3 and x4 are solutions of (1) in Case III and Case IV with χ(x3 + 1) = 1,
χ(x3) = −1 and χ(x4 + 1) = −1,χ(x4) = 1 respectively. Then x3 and x4 satisfy (4) and (5) respectively.
By the sum of (4) and (5), we have

(ux3 +b)3m+1 +(ux4 +b)3m+1 = b3m+1. (6)

Taking the 3mth power on both sides of (6), we have

(ux3 +b)3m+3 +(ux4 +b)3m+3 = b3m+3 (7)

since 3m(3m + 1) = 3n+1 + 3m = 3m + 3+ 3(3n− 1). From (6) and (7), we have (ux3 + b)3m+3 +(ux4 +
b)3m+3 = b2(ux3 +b)3m+1 +b2(ux4 +b)3m+1, that is

−(ux3 +b)3m+1ux3(b−ux3) = (ux4 +b)3m+1ux4(b−ux4). (8)

Note that b−ux3 = ux3+1 and b−ux4 = ux4+1, the left-hand side of (8) is a square element and the right-
hand side of (8) is a nonsquare element. Then ux3 +b = ux4 +b = 0 can be obtained, i.e. ux3 = ux4 , which
contradicts to χ(ux3) = χ(x3) =−1 and χ(ux4) = χ(x4) = 1. We conclude that (1) has at most one solution
in Cases III and IV for fixed b ∈ GF(3n).

From the above discussions, (1) has at most two solutions in GF(3n) \ {0,−1}. One can be easily
calculate that ∆(0) = 1 and ∆(−1) = −1. For b = 1 and b = −1, it can be verified that ∆(x) = 1 and
∆(x) =−1 has no solution in GF(3n)\{0,−1}, i,e, δ(1) = δ(−1) = 1. Then we obtain δ(b)≤ 2 for any
b, which leads to −1∆F ≤ 2 by Lemma 1 and gcd(d,3n−1) = 1 .

For n≡ 3(mod 4), we can also get power functions with low −1-differential uniformity.

Theorem 3. Let F(x) = xd be a power function over GF(3n), where n≡ 3(mod 4) and d = 1
2(3

n+1
2 −1).

We have −1∆F ≤ 4.

Proof: The proof is similar to that of Theorem 2. We give a sketch here. In this case, gcd(d,3n−1)= 2.
With the notation we used before, equations (1), (2) and (3) also hold. Let x ∈ GF(3n) \ {0,−1} be a
solution of (3) for fixed b ∈ GF(3n), four cases are considered as follows.
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Case I. χ(x+1) = χ(x) = 1.
In this case, We have bu3m

x + b3m
ux = b3m+1− 1 from (3). Since the mapping ux 7→ bu3m

x + b3m
ux is

bijective on GF(3n), we can find a unique ux. Then a unique x can be found for χ(x) = 1. This case has
at most one solution.

Case II. χ(x+1) = χ(x) =−1.
Similar to Case I, this case has at most one solution.
Case III. χ(x+1) = 1,χ(x) = −1. We have bu3m

x +b3m
ux = x+b3m+1−1 from (3), and then we have

(ux + b)3m+1 = −b3m+1− 1 by (2). We can obtain two ux’s since gcd(d,3n− 1) = 2 and the consequent
two x’s for given χ(x). This case has at most two solutions.

Case IV. χ(x+1) =−1,χ(x) = 1.
Similar to Case III, this case has at most two solutions.
One can similarly prove that for fixed b, (1) cannot have solution in Case III and Case IV simultaneously.

By discussions as above, we know that (1) has at most four solutions in GF(3n) \ {0,−1}. We have
∆(0) = ∆(−1) = 1. For b = 1, one can easily verify that ∆(x) = 1 has no solution in GF(3n)\{0,−1}, i.e.,
δ(1) = 2. Then we obtain δ(b)≤ 4 for any b, this leads to −1∆F ≤ 4 by Lemma 1 and gcd(d,3n−1) = 2.

For d′ = d + 3n−1
2 , we have the following corollary.

Corollary 4. Let F ′(x) = xd′ be a power function over GF(3n), where n is an odd integer and d′ =
3

n+1
2 −1
2 + 3n−1

2 . We have −1∆F ′ ≤ 2 when n≡ 3(mod 4) and −1∆F ′ ≤ 4 when n≡ 1(mod 4).

Proof: It can be calculated that gcd(d′,3n− 1) ≤ 2. First we consider n ≡ 3(mod 4), i.e., 3n ≡
1(mod 4). By Theorem 2,

(x+1)
3

3n+1
2 −1
2 + x

3
3n+1

2 −1
2 = b (9)

has at most two solutions in GF(33n) for any b ∈ GF(33n). Since (3n− 1)|3
3n+1

2 −1
2 − d′, equation (9)

becomes (x+ 1)d′ + xd′ = b any x,b ∈ GF(3n). Therefore, this equation has at most two solutions in
GF(3n), i.e., −1∆F ′ ≤ 2. The other case can be proved similarly and we omit the details.

III. −1-DIFFERENTIAL UNIFORMITY OF x
3n+1−1

8 OVER GF(3n)

In this section, let F(x) = xd be a power function over GF(3n), where n ≡ 1(mod 4) and d = 3n+1−1
8 .

It was proved in [15] that F(x) is an APN function. We consider the −1-differential uniformity of F(x)
as follows.

Theorem 5. Let F(x) = xd be a power function over GF(3n), where n ≡ 1(mod 4) and d = 3n+1−1
8 . We

have −1∆F ≤ 2.

Proof: Note that gcd(d,3n−1) = 1, F(x) is a permutation on GF(3n). For b ∈ GF(3n), we consider
the c-differential equation

∆(x) = (x+1)d + xd = b. (10)

Let ux+1 = (x+1)d and ux = xd . For x 6= 0, note that

u4
x = x4d = χ(x)x. (11)

Let x ∈ GF(3n) \ {0,−1} be a solution of (10) for fixed b ∈ GF(3n), then ux,ux+1 6= 0. Taking the 4th
power on both sides of ux+1 =−ux +b, we have

bu3
x +b3ux =−χ(x+1)(x+1)+χ(x)x+b4. (12)

For (12), we distinguish the following four cases.
Case I. χ(x+1) = χ(x) = 1.
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In this case, we have bu3
x +b3ux = b4−1 from (12). Since the mapping ux 7→ bu3

x +b3ux is bijective on
GF(3n), we can find a unique ux. Because F(x) is a permutation, a unique x can be found from the ux.
This case has at most one solution.

Case II. χ(x+1) = χ(x) =−1.
This case has at most one solution. The discussion is similar to that of Case I and we omit it.
Case III. χ(x+ 1) = 1,χ(x) = −1. From (12), we have bu3

x + b3ux = x+ b4− 1 in this case, and then
we have

(ux +b)4 =−b4−1 (13)

by (11). If there are two distinct solutions in this case, namely x3 and x′3, then ux3 and ux′3
satisfy (13) with

χ(x3 +1) = χ(x′3 +1) = 1 and χ(x3) = χ(x′3) =−1. Consequently (ux3 +b)4 = (ux′3
+b)4 can be obtained

from (13). Then we have ux3 +b=−(ux′3
+b) since x3 6= x′3, which leads to ux3 = b−ux′3

= ux′3+1. However,
the above conclusion contradicts to χ(ux3) = χ(x3) =−1 and χ(ux′3+1) = χ(x′3+1) = 1. We conclude that
Case III has at most one solution.

Case IV. χ(x+1) =−1,χ(x) = 1. In this case we have bu3
x +b3ux =−x+b4 +1 from (12), and then

(ux +b)4 =−b4 +1 (14)

by (11). Similar to Case III, we can obtain that this case has at most one solution.
Next we will prove for fixed b, (10) cannot have solutions in Case I and Case II simultaneously.

Otherwise, suppose that x1 and x2 are solutions of (10) in Case I and Case II with χ(x1 +1) = χ(x1) = 1
and χ(x2 +1) = χ(x2) =−1 respectively. Then we have bu3

x1
+b3ux1 = b4−1 and bu3

x2
+b3ux2 = b4 +1,

where ux1 and ux2 we defined before. Now we have b(ux1 +ux2)
3+b3(ux1 +ux2) =−b4 and the consequent

ux1 +ux2 = b. From (10), we can obtain ux2 = ux1+1, which contradicts χ(ux2) = χ(x2) =−1 and χ(ux1+1) =
χ(x1 + 1) = 1. Therefore, we conclude that (10) has at most one solution in Cases I and II for fixed
b ∈ GF(3n).

Then we prove for fixed b, (10) cannot have solutions in Case III and Case IV simultaneously. Otherwise,
suppose that x3 and x4 are solutions of (10) in Case III and Case IV with χ(x3 +1) = 1,χ(x3) =−1 and
χ(x4 +1) =−1,χ(x4) = 1 respectively. Then x3 and x4 satisfy (13) and (14) respectively. By the sum of
(13) and (14), we have (ux3 +b)4 +(ux4 +b)4 = b4, that is,

(u2
x3
−bux3 +u2

x4
−bux4 +b2)2 =−ux3(b−ux3)ux4(b−ux4). (15)

Note that b−ux3 = ux3+1 and b−ux4 = ux4+1, the right-hand side of (15) is a nonzero nonsquare element,
which is a contradiction. We conclude that (10) has at most one solution in Cases III and IV for fixed
b ∈ GF(3n). From the above discussions, (10) has at most two solutions in GF(3n)\{0,−1}.

One can easily calculate that ∆(0) = 1 and ∆(−1) = −1. For b = 1 and b = −1, it can be verified
that ∆(x) = 1 and ∆(x) =−1 has no solution in GF(3n)\{0,−1}, i,e, δ(1) = δ(−1) = 1. Then we obtain
δ(b)≤ 2 for any b, this leads to −1∆F ≤ 2 by Lemma 1 and gcd(d,3n−1) = 1 .

For n≡ 3(mod 4) and d′ = d + 3n−1
2 , we list the following theorems without proof.

Theorem 6. Let F(x) = xd be a power function over GF(3n), where n ≡ 3(mod 4) and d = 3n+1−1
8 . We

have −1∆F ≤ 4.

Corollary 7. Let F ′(x) = xd′ be a power function over GF(3n), where n is an odd integer and d′ =
3n+1−1

8 + 3n−1
2 . We have −1∆F ′ ≤ 2 when n≡ 3(mod 4) and −1∆F ′ ≤ 4 when n≡ 1(mod 4).
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IV. −1-DIFFERENTIAL UNIFORMITY OF x(3
n+1

4 −1)(3
n+1

2 +1) OVER GF(3n)

In [29], the authors studied the power function F(x) = xd over GF(3n), where n ≡ 3(mod 4) and
d = (3

n+1
4 − 1)(3

n+1
2 + 1). It was shown that xd is an APN function. In what follows, we discuss the

−1-differential uniformity of F(x).

Theorem 8. Let F(x) = xd be a power function over GF(3n), where n≡ 3(mod 4), d = (3m−1)(32m+1)
and m = n+1

4 . Then −1∆F ≤ 4.

Proof: Note that d is an even number and gcd(d,3n−1) = 2. For b ∈GF(3n), we consider equation

∆(x) = (x+1)d + xd = b. (16)

It is easy to see that ∆(0) = ∆(−1) = 1, and (16) has no solution when b = 0. Let x ∈GF(3n)\{0,−1} be
a solution of (16) for some given b ∈ GF(3n)∗. Denote by ux+1 = (x+1)d and ux = xd . Since 3m+1

2 ·d =
3n+1−1

2 ≡ 1+ 3n−1
2 (mod 3n−1), we have ux

3m+1
2 = χ(x)x and ux+1

3m+1
2 = χ(x+1)(x+1). One can easily

see that if ux and χ(x) are given, x can be determined uniquely.
Let ξ∈GF(32n)\{0,±1} such that ux

b = ξ+ 1
ξ
−1= (ξ+1)2

ξ
, then we have ux+1

b =−ξ− 1
ξ
−1=− (ξ−1)2

ξ
by

(16). Moreover, we can obtain χ(x)x= ux
3m+1

2 =(b(ξ+1)2

ξ
)

3m+1
2 and b(ξ+1)2

ξ
= xd =(b(ξ+1)2

ξ
)

3m+1
2 ·d . Similarly,

−b(ξ−1)2

ξ
= (x+1)d = (−b(ξ−1)2

ξ
)

3m+1
2 ·d . Then ξ satisfies −(ξ+1

ξ−1)
2 = (ξ+1

ξ−1)
(3m+1)d , i.e., (ξ+1

ξ−1)
3(3n−1) =−1.

This with ξ ∈ GF(32n) leads to ξ3n+1 = 1. In the following, we discuss equation (16) in two cases.
Case 1. χ(x+1) = χ(x).
In this case, ux+1

3m+1
2 −ux

3m+1
2 = χ(x+1)(x+1)−χ(x)x = χ(x). That is,

(−b(ξ−1)2

ξ
)

3m+1
2 − (

b(ξ+1)2

ξ
)

3m+1
2 = χ(x).

We deduce the following equation

(−1)
3m+1

2 (ξ−1)3m+1− (ξ+1)3m+1 = χ(x)b−
3m+1

2 ξ
3m+1

2 . (17)

Two subcases are considered as follows.
Subcase 1.1. 3m+1

2 is even, i.e., m is odd. Then (17) becomes ξ3m
+ξ = χ(x)b−

3m+1
2 ξ

3m+1
2 . Let t = ξ

3m−1
2 ,

then t1,2 =−χ(x)b−
3m+1

2 ±
√

b−(3m+1)−1. Since m is odd, then gcd(m,2n) = 1 and gcd(3m−1
2 ,32n−1) = 1.

We can obtain a unique ξ1 from ξ
3m−1

2 = t1 since gcd(3m−1
2 ,32n−1) = 1. For t2 = t−1

1 , we can also obtain

a unique ξ2 such that ξ
3m−1

2
2 = t2. Note that ξ2 = ξ

−1
1 and they give the same ux.

Subcase 1.2. 3m+1
2 is odd, i.e., m is even. Then (17) becomes ξ3m+1+1= χ(x)b−

3m+1
2 ξ

3m+1
2 . Let t = ξ

3m+1
2 ,

then t1,2 =−χ(x)b−
3m+1

2 ±
√

b−(3m+1)−1. Since m is even, then gcd(m,2n)= 2 and gcd(3m+1
2 ,32n−1)= 1.

We can obtain a unique ξ1 from ξ
3m+1

2 = t1 since gcd(3m+1
2 ,32n−1) = 1. For t2 = t−1

1 , we can also obtain

a unique ξ2 such that ξ
3m+1

2
2 = t2. Note that ξ2 = ξ

−1
1 and they give the same ux.

By discussions in the above two subcases, we conclude that one can obtain a unique ux from given b
and χ(x), and then we find at most one solution of (17) for each χ(x). This case has at most 2 solutions.

Case 2. χ(x+1) =−χ(x).
In this case, ux+1

3m+1
2 +ux

3m+1
2 = χ(x+1)(x+1)+χ(x)x =−χ(x). That is,

(−b(ξ−1)2

ξ
)

3m+1
2 +(

b(ξ+1)2

ξ
)

3m+1
2 =−χ(x).

We deduce the following equation

(−1)
3m+1

2 (ξ−1)3m+1 +(ξ+1)3m+1 =−χ(x)b−
3m+1

2 ξ
3m+1

2 . (18)
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We have following two subcases.
Subcase 2.1. 3m+1

2 is even. Then (18) becomes

ξ
3m+1 +1 = χ(x)b−

3m+1
2 ξ

3m+1
2 .

Let t = ξ
3m+1

2 , if χ(x) = 1, then t1,2 =−b−
3m+1

2 ±
√

b−(3m+1)−1. Note that t2 = t−1
1 and they give the same

ux’s, we only consider t1. Since 3m+1
2 is even, m is odd, then gcd(3m+1

2 ,3n +1) = 2. We can obtain two
solutions, namely ±ξ1, from ξ

3m+1
2 = t1 since gcd(3m+1

2 ,3n +1) = 2. If χ(x) = −1, then t3,4 = b−
3m+1

2 ±√
b−(3m+1)−1. We only consider t4, which satisfies t4 =−t1. Similarly, we obtain another two ξ’s, namely

δξ1, −δξ1, where δ ∈ GF(32n) with δ2 =−1. In this subcase, we get four distinct ξ’s and each of them
corresponds a possible solution of (16).

Subcase 2.2. 3m+1
2 is odd. Then (18) becomes

ξ
3m

+ξ = χ(x)b−
3m+1

2 ξ
3m+1

2 .

Let t = ξ
3m−1

2 , if χ(x) = 1, then t1,2 =−b−
3m+1

2 ±
√

b−(3m+1)−1. We only consider the equation ξ
3m−1

2 = t1
since the solutions of another equation correspond the same ux’s. Since 3m+1

2 is odd, m is even, and
gcd(3m−1

2 ,3n + 1) = 4. We obtain four solutions from ξ
3m−1

2 = t1, namely ξ2,δξ2,−ξ2,−δξ2, where δ ∈
GF(32n) with δ2 = −1. If χ(x) = −1, then t3,4 = b−

3m+1
2 ±

√
b−(3m+1)−1. We only consider t4, which

satisfies t4 = −t1. If ξ′2 is a solution of ξ
3m−1

2 = t4 = −t1, then (
ξ′2
ξ2
)

3m−1
2 = −1. We obtain that (ξ′2

ξ2
)4 = 1

from gcd(3m−1,3n +1) = 4, i.e., ξ′2 = δiξ2, 0≤ i≤ 3. That means ξ
3m−1

2 = t4 cannot contribute new ξ’s.
We also obtain four distinct ξ’s in this subcase.

Recall that ux = b(ξ+ 1
ξ
−1), in the following we prove that ξ and δξ cannot contribute solutions of (16)

simultaneously, where δ we defined before. More precisely, let ux1 = b(ξ+ 1
ξ
−1) and ux2 = b(δξ+ 1

δξ
−1),

then we have
(ux1 +b)2 +(ux2 +b)2 = b2((ξ+

1
ξ
)2 +(δξ+

1
δξ

)2) = b2.

The above identity can be rewritten as

(ux1 +ux2 +b)2 =−ux1ux2,

which is a contradiction. That means each of subcases 2.1 and 2.2 has at most two solutions.
By discussions as above, we conclude that −1∆F ≤ 4. The proof is finished.

V. C-DIFFERENTIAL UNIFORMITY OF x
3n+1

4 + 3n−1
2 OVER GF(3n)

It was proved in [19] that the power function xd is an APN function over GF(3n), where n is an odd
integer and d = 3n+1

4 + 3n−1
2 . The −1-differential uniformity is considered as follows.

Theorem 9. Let F(x) = xd be a power function over GF(3n), where n is odd and d = 3n+1
4 + 3n−1

2 . Then
−1∆F ≤ 4.

Proof: One can easily obtain that d is even and gcd(d,3n−1) = 2. Note that χ(−1) =−1 since n is
odd. We consider the c-differential equation

∆(x) = (x+1)d + xd = b. (19)

When b = 0, (19) has no solution. For fixed b ∈ GF(3n)∗, let x ∈ GF(3n)\{0,−1} is a solution of (19),
we distinguish the following four cases.

Case I. χ(x+1) = χ(x) = 1. Let x+1 = α2 and x = β2 for α,β ∈ GF(3n)∗, then α2−β2 = 1. We can
obtain χ(α)α+χ(β)β = b from (19). We have

β
2 +1 = α

2 = (χ(α)α)2 = (b−χ(β)β)2 = b2 +bχ(β)β+β
2.
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One can obtain χ(β)β = b−1−b and x = β2 = (χ(β)β)2 = (b−1−b)2. This case has at most one solution.
Case II. χ(x+1) = χ(x) =−1. Let x+1 =−α2 and x =−β2 for α,β ∈ GF(3n)∗, then α2−β2 =−1.

Similar to Case I, we can obtain x =−(b+b−1)2. This case has at most one solution.
Case III. χ(x+ 1) = 1,χ(x) = −1. Let x+ 1 = α2 and x = −β2 for α,β ∈ GF(3n)∗, then α2 +β2 = 1.

We can obtain χ(α)α+χ(β)β = b from (19). Let γ = χ(β)β, which is a square element in GF(3n). Then
γ2 = β2 and γ satisfies (b− γ)2 + γ2 = 1, i.e.

γ
2−bγ+1−b2 = 0, (20)

which is a quadratic equation on γ. Equation (20) has most two solutions, then we can obtain at most
two x’s since x = γ2. This case has at most two solutions.

Case IV. χ(x+1) =−1,χ(x) = 1. Let x+1 =−α2 and x = β2 for α,β ∈ GF(3n)∗, then α2 +β2 =−1.
We can obtain χ(α)α+χ(β)β = b from (19). Let γ = χ(β)β, which is a square element in GF(3n). Then
γ2 = β2 and γ satisfies (b− γ)2 + γ2 =−1, i.e.

γ
2−bγ−1−b2 = 0, (21)

which is a quadratic equation on γ. Equation (21) has most two solutions, then we can obtain at most
two x’s since x = γ2. This case has at most two solutions.

Note that x is a solution of (19) if and only if −x− 1 is a solution of (19). This implies that if
Case III (the same for Case IV) has solutions, it must has two solutions. Next we prove that for fixed
b ∈GF(3n)∗, (19) cannot have solution in Case III and Case IV simultaneously. Suppose on the contrary
that x1, x2 are distinct solutions of (19) for some given b in Case III, and x3, x4 are distinct solutions
of (19) for the same b in Case IV. By the discussions above, each xi,1 ≤ i ≤ 4 corresponds to square
element γi. Moreover, γ1, γ2 are the two solutions of (20), and γ3, γ4 are the two solutions of (21).
They satisfy γ1 + γ2 = γ3 + γ4 = b, γ1γ2 = 1− b2 and γ3γ4 = −1− b2. We can obtain γ2

1 + γ2
2 + γ2

3 + γ2
4 =

(γ1+γ2)
2+γ1γ2+(γ3+γ4)

2+γ3γ4 = 0. Since γ4 6= 0, let δi = γi/γ4, 1≤ i≤ 3, then δ1,δ2 and δ3 are square
elements, and they satisfy δ1 +δ2−δ3−1 = 0 and δ2

1 +δ2
2 +δ2

3 +1 = 0. Replace by δ3 = δ1 +δ2−1, we
have the following quadratic equation on δ1.

δ
2
1− (δ2−1)δ1 +(δ2

2−δ2 +1) = 0.

The discriminate of the above quadratic equation is ∆= (δ2−1)2−(δ2
2−δ2+1) =−δ2, which is a nonzero

nonsquare element in GF(3n). It contradicts to δ1 ∈ GF(3n). Then we proved that for b ∈ GF(3n)∗, (19)
has at most 4 solutions in GF(3n)\{0,−1}.

One can easily check that ∆(0) = ∆(−1) = 1. For b = 1, it can be verified that ∆(x) = 1 has no solution
in the four cases, i.e., ∆(x) = 1 has no solution in GF(3n)\{0,−1}, δ(1) = 2. This with the discussions
above leads to −1∆F ≤ 4.

VI. CONCLUDING REMARKS

In this paper, we studied the −1-differential uniformity of ternary APN power functions. We obtain
many classes of power functions with low −1-differential uniformity, and some of them are almost perfect
−1-nonlinear. It is mentioned that in this paper we give the upper bound of the −1-differential uniformity
of some power functions, it is better to study whether the equality holds. In this paper, we only studied
c =−1, it is also good to study the c-differential properties for ±1 6= c ∈ GF(3n). Our future work is to
find more power functions with low c-differential uniformity. This topic is widely open. Power functions
with low usual differential uniformity are useful in sequences, coding theory, and combinatorial designs.
It is worth finding the applications of power functions with low c-differential uniformity in such areas.
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