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Abstract. A basic problem about a constant dimension subspace code is to find

its maximal possible size Aq(n, d, k). This paper investigates constant dimension

codes with parallel linkage construction and multilevel construction and obtains

new lower bounds of sizes of Aq(18, 6, 9). Then we combined the Johnson type

bound and got better lower bounds of Aq(17, 6, 8). These low bounds are larger

than previously best known bounds in [16].

1. Introduction

Let Fq be a finite field with q elements. The set of all subspaces of Fqn is denoted

by Pq(n). For any U ,V ∈ Pq(n), the subspace distance of U and V is defined as:

dS(U ,V) = dim(U + V)− dim(U ∩ V) = dim(U) + dim(V)− 2dim(U ∩ V),

where dim(·) denotes the dimension of a vector space over Fq. Let Gq(n, k) be the set

of all k-dimensional Fq-subspaces of Fqn . A subset C ⊆ Gq(n, k) with the subspace

distance dS is called a constant dimension code. The minimum subspace distance of

C is defined as:

dS(C) = min{dS(U ,V)|U ,V ∈ C,U 6= V}.

C is called an (n,M, d, k)q, if |C| = M , and dS(C) = d. A basic problem about a

constant dimension subspace code is to find the maximal possible size Aq(n, d, k) of

an (n,M, d, k)q constant dimension code.

Constant dimension subspace codes are tool for studying random network coding.

It is very useful with efficient encoding and decoding algorithms. We can find various

results on the construction of constant dimension codes in the literature (see [3, 4, 9,

10, 14, 15, 16, 17, 18, 23, 24]).

(1) Heide Gluesing-Luerssen and Carolyn Troha in [13] linked two constant dimen-

sion codes with small length and obtained constant dimension codes with large lower

bounds. This construction was named as the linkage construction.
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(2) Liqin Xu and Hao Chen in [25] presented an interesting construction, which was

named as the parallel construction, to establish new lower bounds for Aq(2k, 2d, k),

where k ≥ 2d.

(3) Hao Chen et al in [5] improved the linkage construction and presented a new

construction which was named as the parallel linkage construction. Many new lower

bounds on Aq(n, d, k) were proved from the parallel linkage construction.

(4) Fagang Li in [19] gave another effective improvement of the linkage construction

which was named as multilevel linkage construction. He combined the multilevel con-

struction and linkage construction and obtained some new lower bounds of constant

dimension codes for small parameters.

(5) Shuangqing Liu, Yanxun Chang and Tao Feng in [22] combined the parallel

construction and the multilevel construction and give many constant dimension codes

with larger size than the previously best known codes.

In this paper, inspired by the results in [5, 22], we use the parallel linkage construc-

tion and multilevel construction to present an improved version. As a consequence,

better constant dimension codes are constructed. This paper is organized as follows.

In Section 2, we give some basic results. In Section 3, we show the main results. The

maximal possible size Aq(n, d, k) of constant dimension codes are larger than those

in [16]. In Section 4, we conclude the paper.

2. Preliminaries

In this section, we will review some definitions and previous results. For more

details, readers can refer to [2, 5, 6, 7, 9, 12].

2.1. MRD codes and Ferrers diagram rank-metric codes.

Definition 2.1. The rank-metric code M is a subset of the matrix space Fm×nq

endowed with the rank metric dR(A,B) = rank(A − B). A linear rank-metric code

[m× n, ρ, d]q is a linear subspace of Fm×nq with cardinality qρ and distance d.

It is well-known that the number of codewords in M is upper bounded by

qmax{m,n}×(min{m,n}−d+1)

(see [7, 12]). A code attaining this bound is called a maximum rank − distance

(MRD) code.

Let X be a subspace of dimension k of Fnq . It can be represented by a k × n

generator matrix whose k rows form a basis for X. There is exactly one such matrix

in reduced row echelon form and it is denoted by E(X).

Definition 2.2. [9] For each subspace X of dimension k of Fnq , let E(X) be the

reduced row echelon form of X. A binary row vector v(X) of length n and weight

k is called the identifying vector of X, where the k ones of v(X) are exactly the

pivots of E(X).
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Example 2.3. Let X be a 3-dimension subspace of F7
2 with the following generator

matrix in reduced row echelon form:

E(X) =

 1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 0 1 0 1 1

 .

Then the identifying vector of X is v(X) = (1101000).

Let F(X) be obtained by remove the columns which contain the pivots of E(X)

and the zeroes from each row of E(X) to the left of the pivots. The Ferrers diagram of

a k-dimension subspace X of Fnq , denoted by FX , is acquired from F(X) by replacing

the entries of F(X) with dots.

Example 2.4. Consider the 3-dimension subspace X of Example 2.3, the correspond-

ing F(X) is

0 1 1 0

0 1 0 1

0 1 1

.

The corresponding Ferrers diagram FX of X is

• • • •
• • • •
• • •

.

Definition 2.5. [2] Let F be a k×(n−k) Ferrers diagram. An Fq-linear rank-metric

code CF ⊆ Fk×(n−k)q is called a Ferrers diagram rank-metric code if every matrix

M ∈ CF has shape F , that is, all entries of M not in F are zeroes. If F is a full

k × (n − k) Ferrers diagram with k × (n − k) dots, then its corresponding Ferrers

diagram rank-metric code is just a classical rank-metric code. A Ferrers diagram

rank-metric code is called an [F , ρ, d]-code if rank(M) ≥ d for arbitrary nonzero

codeword M ∈ CF and dim(CF) = ρ.

The following lemma in [9] plays an important role to obtain the desired minimum

distance.

Lemma 2.6. Let X and Y be two subspaces of Pq(n) with identifying vectors v(X)

and v(Y ), respectively, then

dS(X, Y ) ≥ dH(v(X), v(Y )),

where dH(u, v) denotes the Hamming distance between u and v.

Lemma 2.7. [9] Let F be a k × n Ferrers diagram and CF ⊆ Fk×nq be a Ferrers

diagram rank-metric code with minimum distance d. Then an upper bound of the

cardinality of CF is qmini{ti}, where ti is the number of dots in F after removing the

top i rows and rightmost d− 1− i columns for 0 ≤ i ≤ d− 1.
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An [F , ρ, d]-code is called an optimal Ferrers diagram rank − metric code if it

attains the upper bound of qmini{ti}. The existence of optimal Ferrers diagram rank-

metric code has been proven.(see [2, 20, 21, 27]). The following Lemma is a criterion

for check the existence of optimal Ferrers diagram rank-metric code.

Lemma 2.8. [8, 9] Let F be a k×n (k ≥ n) Ferrers diagram and each of the rightmost

d−1 columns of F has at least n dots. Then there exists an optimal [F ,
∑n−d+1

i=1 εi, d]

code for any prime power q, where εi is the number of dots in i-th column of F .

For a Ferrers diagram F of size k ≥ n, one can transpose it to obtain a Ferrers

diagram FT of size n ≥ k, where the rightmost column of F is the first row of FT

and so on. Thus if there exists an optimal Ferrers diagram rank-metric code for F ,

then so does an optimal Ferrers diagram rank-metric code for FT .

Lemma 2.9. [22] Let m,n, k1, k2 are integers with m,n ≥ k1 and n ≥ k2. Let

F12 = (F1|FT2 ) be a n × (m + k2) Ferrers diagram, which F1 is a k1 × m Ferrers

diagram and F2 is a k2 × n Ferrers diagram. If there exists an [F12, ρ, d]q code, then

there exists an [F , ρ, d] code D, where

F =

(
F1 F3

F2

)
satisfying that for any codeword D ∈ D, D|F3 = O, where F3 is a k1 × n Ferrers

diagram and O is a k1 × n zero matrix.

For m, k2 ≥ k1, n ≤ k2, let F12 = (F1|F2) be a k2 × (m + n) Ferrers diagram.

If there exists an [F12, ρ, d]q code, then there exists an [F , ρ, d] code. Similarly, for

any m,n, k1, k2, we can choose suitable form of F12 and get the similar result with

Lemma 2.9.

For a given [k×(n−k), ρ, d] rank-metric codeM, we can construct an (n, qρ, 2d, k)q
constant dimension code CM by lifting M, i.e., CM = {rs(Ik|M) : M ∈ M}, where

rs(·) denotes the row space of a matrix. Similarly, let F be a k × (n − k) Ferrers

diagram and CF ⊆ Fk×(n−k)q is the corresponding Ferrers diagram rank-metric code.

A lifted constant dimension code C̃F is defined as follows:

C̃F = {X ∈ Gq(n, k) : F(X) ∈ CF ,FX = F}.

As an immediate consequence from the lifting construction [9], we have the following.

Lemma 2.10. Let CF ⊆ Fk×(n−k)q be an [F , ρ, d] Ferrers diagram rank-metric code,

then its lifted code C̃F is an (n, qρ, 2d, k)q constant dimension code.

Etzion in [9] presented the multilevel construction to construct (n,M, 2d, k)q con-

stant dimension code with large cardinality. Let C be a binary constant-weight code

with length n, weight k, and Hamming distance 2d. For each codeword c ∈ C, let

Fc be Ferrers diagram corresponding to identifying vector c. Then we construct an
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[Fc, ρ, d] Ferrers diagram rank-metric code CFc for the Ferrers diagram Fc of c. Con-

sider the set defined by C =
⋃
c∈C C̃Fc , where the constant dimension code C̃Fc is

lifted by CFc . As an immediate consequence of Lemma 2.7 and 2.9, we obtain an

(n,M, 2d, k)q constant dimension code, where M =
∑

c∈C |C̃Fc|.

2.2. Construction of constant dimension codes through linkage.

In this section, we will review some basic notations and previous results about

linkage construction.

Definition 2.11. [13] A set M⊆ Fk×nq of k × n matrices over Fq is called an SC −
representation of a constant dimension code in Gq(n, k) if the following conditions

are satisfied.

(a) For each M ∈M, rank(M) = k.

(b) For any two distinct matrices M1,M2 ∈M, rs(M1) 6= rs(M2).

Obviously, the corresponding constant dimension code ofM is {rs(M) : M ∈M},
denoted by C(M).

Lemma 2.12. (Parallel linkage construction) [5] LetM1 andM2 be SC-represe-

ntation of two (k + n,N1, d, k)q and (n + k,N2, d, k)q constant dimension codes sat-

isfying that each k × (k + n) matrix in M1 is of the form (M1|M ′
1), where M1 is

a non-singular k × k matrix. Suppose d ≤ k. Let Q1 ⊆ Fk×kq be a code with rank

distance d
2

and N3 elements. Let Q2 ⊆ Fk×kq be a code with rank distance d
2

and N4

elements such that the rank of each element in Q2 is at most k− d
2
. Consider the set

defined by C = C1 ∪ C2, where

C1 = {rs(M1|M ′
1|Q) : (M1|M ′

1) ∈M1, Q ∈ Q1},

C2 = {rs(Q′|M2) : M2 ∈M2, Q
′ ∈ Q2}.

Then C is a (k + n+ k,N1N3 +N2N4, d, k)q constant dimension code.

2.3. Delsarte theorem and Jahnson type bound.

In this section, we recall some basic notations and results about Delsarte theorem.

Definition 2.13. Let M⊆ Fk×nq , then the rank distribution of M is defined by

Ai(M) = |{M ∈M : rank(M) = i}|.

The rank distribution of an MRD code is completely determined by its parameters.

The following results can be referred to Corollary 26 in [6] or Theorem 5.6 in [7]. The

Delsarte Theorem is essential to calculate the final results in this paper.

Lemma 2.14. (Delsarte1978) Let M ⊆ Fk×nq (n ≥ k) is an MRD code with rank

distance d, then its rank distribution is given by

Ar(M) =

(
k

r

)
q

r−d∑
i=0

(−1)iq(
i
2)
(
r

i

)
q

(
qn(k−d+1)

qn(k+i−r)
− 1).
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Johnson type bound [11, 26] can be used to get some better constant constant

dimension subspace codes in our construction.

Lemma 2.15. [11] Let n, k, d be integers with k ≥ 2d. Then

Aq(n, 2d, k) ≤ qn − 1

qk − 1
Aq(n− 1, 2d, k − 1).

3. Main results

In this section, we combine the parallel linkage construction and the multilevel

construction and obtain some new lower bounds of constant dimension codes.

Let m,n, k, d are integers with m ≥ k + d, n ≥ d and k ≥ 3d. Cosider the set of

identifying vectors with length m+ n and weight k defined by

S = {si = (1 . . . 1︸ ︷︷ ︸
k−3d

|αi|βi| 1 . . . 1︸ ︷︷ ︸
d

0 . . . 0︸ ︷︷ ︸
n−d

) : αi ∈ F2d
2 , βi ∈ Fm−k+d2 , 0 ≤ i ≤ 3},

where α0 = (0 · · · 0︸ ︷︷ ︸
d

0 · · · 0︸ ︷︷ ︸
d

), α1 = (0 · · · 0︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
d

), α2 = (1 · · · 1︸ ︷︷ ︸
d

0 · · · 0︸ ︷︷ ︸
d

), α3 = (1 · · · 1︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
d

),

wH(β0) = 2d, wH(β1) = wH(β2) = d, and wH(β3) = 0.

It is obvious that dH(si, sj) ≥ dH(αi, αj) +dH(βi, βj) ≥ 2d, 0 ≤ i 6= j ≤ 3. Without

loss of generality, let β0 = (1 . . . 1︸ ︷︷ ︸
2d

0 . . . 0︸ ︷︷ ︸
m−k−d

). Note that the reduced row echelon form

E(s0) coresponding to identifying vector s0 is

E(s0) =


Ik−3d F01 F02 O O F03 O F06

O O O Id O F04 O F07

O O O O Id F05 O F08

O O O O O O Id F09

 ,

where F01, F02 are (k− 3d)× d full Ferrers diagram, F03 is a (k− 3d)× (m− k− d)

full Ferrers diagram, F04, F05 are d × (m − k − d) full Ferrers diagram, F06 is a

(k − 3d) × (n − d) full Ferrers diagram, F07,F08,F09 are d × (n − d) full Ferrers

diagrams, and O is zero matrix with suitable size.

Let

F0 =


F01 F02 F03 F06

F04 F07

F05 F08

F09


be a k× (m+n−k) Ferrers diagram and DF0 be a Ferrers diagram rank-metric code

with shape F0. Consider the set of k-dimension subspaces in Fm+n
q defined by

CF0 =

{
rs


Ik−3d D01 D02 O O F03 O D06

O O O Id O D04 O D07

O O O O Id D05 O D08

O O O O O O Id D09

 :


D01 D02 D03 D06

O O D04 D07

O O D05 D08

O O O D09

 ∈ DF0

}
,
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Take a (k − d) × (m + n − k) Ferrers diagram F0′ =

 F04 F06

F08

F09

 , by Lemma

2.8, there exists an optimal [F0′ , (n−d)(k−2d)+m+n−k−2d, d] code. By Lemma

2.9, we obtain an [F0, (n − d)(k − 2d) + m + n − k − 2d, d] code D′F . Note that

each codeword in D′F is of the form

 O
01

O02 ∗
∗ O03

O04 ∗
O05 ∗

, where O01 is a d× 2d zero

matrix, O02 is a (k− 3d)× (m− k− d) zero matrix, O04, O05 are two d× (m− k− d)

zero matrix, and O03 is a d× (n− d) zero matrix.

Take DF0 = D′F , then DF0 is a Ferrers diagram rank-metric code in F0 with

minimum rank distance d and cardinality q(n−d)(k−2d)+m+n−k−2d. By Lemma 2.10,

CF0 is an (m+ n, q(n−d)(k−2d)+m+n−k−2d, 2d, k)q constant dimension code.

The case of β1 is similar to the case of β2. For simplicity, we omit the case of β1.

Without loss of generality, let β2 = (1 . . . 1︸ ︷︷ ︸
d

0 . . . 0︸ ︷︷ ︸
m−k

). Note that the reduced row echelon

form E(s2) coresponding to identifying vector s2 is

E(s2) =


Ik−3d O F21 O F23 O F26

O Id F22 O F24 O F27

O O O Id F25 O F28

O O O O O Id F29

 ,

where F21 is a (k − 3d)× d full Ferrers diagram, F22 is a d× d full Ferrers diagram,

F23 is a (k − 3d) × (m − k) full Ferrers diagram, F24 and F25 are two d × (m − k)

full Ferrers diagram, F26 is a (k − 3d) × (n − d) full Ferrers diagram, F27,F28,F29

are d× (n− d) full Ferrers diagrams, and O is zero matrix with suitable size.

Let

F2 =


F21 F23 F26

F22 F24 F27

F25 F28

F29


be a k × (m+ n− k) Ferrers diagram. Consider the set of k-dimension subspaces in

Fm+n
q defined by

CF2 =

{
rs


Ik−3d O D21 O D23 O D26

O Id D22 O D24 O D27

O O O Id D25 O D28

O O O O O Id D29

 :


D21 D23 D26

D22 D24 D27

O D25 D28

O O D29

 ∈ DF2

}
,
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Take a (k − d) × (m + n − k) Ferrers diagram F2′ =

 F22 F24 F26

F28

F29

, by

Lemma 2.8, there exists an optimal [F2′ , (n − d)(k − 2d) + m + n − k, d] code. By

Lemma 2.9, we obtain an [F2, (n−d)(k−2d)+m+n−k, d] code D′′F . Note that each

codeword in D′′F is of the form


O21 O24 D26

D22 D24 O27

O22 O25 D28

O23 O26 D29

, where O21 is a (k− 3d)× d zero

matrix, O22, O23 are two d× d zero matrix, O24 is a (k − 3d)× (m− k) zero matrix,

O25, O26 are two d× (m− k) zero matrix, and O27 is a d× (n− d) zero matrix.

Take DF2 = D′′F , then DF2 is a Ferrers diagram rank-metric code in F2 with

minimum rank distance d and cardinality q(n−d)(k−2d)+m+n−k. By Lemma 2.10, CF2 is

an (m+ n, q(n−d)(k−2d)+m+n−k, 2d, k)q constant dimension code.

Note that the reduced row echelon form E(s3) corresponding to identifying vector

s3 is

E(s3) =


Ik−3d O O F31 O F34

O Id O F32 O F35

O O Id F33 O F36

O O O O Id F37

 ,

where F31 is a (k−3d)×(m−k+d) full Ferrers diagram, F32,F33 are two d×(m−k+d)

full Ferrers diagram, F34 is a (k−3d)×(m−k+d) full Ferrers diagram, F35,F36,F37

are d× (n− d) full Ferrers diagrams, and O is zero matrix with suitable size. Let

F3 =


F31 F34

F32 F35

F33 F36

F37


be a k × (m+ n− k) Ferrers diagram. Consider the set of k-dimension subspaces in

Fm+n
q defined by

CF3 =

{
rs


Ik−3d O O D31 O D34

O Id O D32 O D35

O O Id D33 O D36

O O O O Id D37

 :


D31 D34

D32 D35

D33 D36

O D37

 ∈ DF3

}
,

Take a (k − d) × (m + n − k) Ferrers diagram F3′ =

 F32 F34

F36

F37

, by Lemma

2.8, there exists an optimal [F3′ , (n−d)(k−2d) +m+n−k, d] code. By Lemma 2.9,

we obtain an [F3, (n− d)(k− 2d) +m+ n− k, d] code D′′′F . Note that each codeword
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in D′′′F is of the form


O31 ∗
∗ O35

O33 ∗
O34 ∗

, where O31 is a (k − 3d) × (m − k + d) zero

matrix, O33, O34 are two d × (m − k + d) zero matrix and O35 is a d × (n − d) zero

matrix. Take DF3 = D′′′F , then DF3 is a Ferrers diagram rank-metric code in F3 with

minimum rank distance d and cardinality q(n−d)(k−2d)+m+n−k. By Lemma 2.10, CF3 is

an (m+ n, q(n−d)(k−2d)+m+n−k, 2d, k)q constant dimension code.

Similar to the above, we can obtained constant dimension codes CF1 with suitable

form and parameters. Consider the set of k-dimension subspaces in Fm+n
q defined by

CF = ∪3i=0CFi
.

It is clear that CF is an (m+ n,
∑3

i=0 |DFi |, 2d, k)q constant dimension code.

Theorem 3.1. Let U ⊆ Fk×mq be SC-representation of constant dimension codes C(U)

with m ≥ k, |U| = N1, and dS(C(U)) = 2d. Let P ⊆ Fk×nq be a rank-metric code with

|P| = N2 and dR(P) = d. Define a constant dimension code

C1 = {rs(U |P ) : U ∈ U , P ∈ P}.

Let V ⊆ Fk×nq be SC-representation of constant dimension codes C(V) with n ≥
k, |V| = N3, and dS(C(V)) = 2d. Let Q ⊆ Fk×nq be a rank-metric code with |Q| = N4

and dR(Q) = d such that the rank of each matrix in Q is at most k − d. Define a

constant dimension code

C2 = {rs(Q|V ) : Q ∈ Q, V ∈ V}.

Consider the constant dimension code defined by C = C1∪C2∪CF , where CF = ∪3i=0CFi

is the same as above. Then C is an (m+ n, |C|, 2d, k)q constant dimension code with

|C| = N1N2 +N3N4 +
∑3

i=0 |DFi |.

Proof. By Lemma 2.12, C1 is an (m + n,N1N2, 2d, k)q constant dimension code and

C2 is an (m+ n,N3N4, 2d, k)q constant dimension code. By the definitions of C1, C2,
and CF , C1 ∩ C2 ∩ CF = ∅ and |C| = N1N2 +N3N4 +

∑3
i=0 |DF i |.

For each subspaces X = rs(U |P ) ∈ C1, Y = rs(Q|V ) ∈ C2 and Z ∈ CF . Let

u = (u1, 0, . . . , 0), v = (v1, v2) and w = (w1, w2) be identifying vectors corresponding

to X , Y and Z, respectively, where u1, v1, w1 ∈ Fm2 and v2, w2 ∈ Fn2 . By the definitions

of C1, C2 and CF , then dH(u1) = k, d ≤ dH(v1) ≤ k − d, dH(v2) ≥ d, dH(w1) = k − d
and dH(w2) = d. By Lemma 2.6, dS(X ,Y) ≥ dH(u, v) = dH(u1, v1) + dH(u2) ≥ 2d

and dS(X ,Z) ≥ dH(u,w) = dH(u1, w1) + dH(w2) = 2d.

It suffices to examine the subspace distance of Y ∈ C2 and Z ∈ CF . Without loss

of generality, let Z ∈ CF3
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By the definition of subspace distance,

dS(Y ,Z) = 2 rank


Ik−3d O O O

O Id O D12

O O Id O

O O O O

O D14

O O

O D16

Id D17

Q V

− 2k.

We can exchange columns in the last n columns to make the last k columns in V

be a k × k unit matrix Ik : V = (V ′|IK), V ′ is a matrix with k × (n − k). In the

meanwhile,


O D14

O O

O D16

Id D17

 will be transformed to


A11 A14

O O

A12 A15

A13 A16

 as follow :

dS(Y ,Z) = 2 rank


Ik−3d O O O

O Id O D12

O O Id O

O O O O

A11 A14

O O

A12 A15

A13 A16

Q V ′ Ik

− 2k.

It is obvious that dS(Y ,Z) ≥ 2
(
rank

(
O Id O D12

)
+ rank(Ik)

)
− 2k = 2d.

In summary, the minimum distance of C is 2d.

This completes the proof. �

Corollary 3.2. Let m,n, k, d be integers with m,n ≥ k. Then

Aq(m+ n, 2d, k) ≥ Aq(m, 2d, k)qm×(k−d+1) +
k−d∑
j=d

Aj(Q)Aq(n, 2d, k) +
3∑
i=0

|DFi |.

Proof. Let P be a MRD code with dR(P) = d, then N2 = qm×(k−d+1). Let Q be a

MRD code with dR(Q) = d, then by Lemma 2.14, N4 =
∑k−d

j=d Aj(Q). It is clear that

the maximal size of C1 and C2 are Aq(m, 2d, k)qm×(k−d+1) and
∑k−d

j=d Aj(Q)Aq(n, 2d, k),

respectively. By Theorem 3.1, the conclusion holds. �

In the proof of Theorem 3.1, one can choose other identifying vectors to change

the details of the multilevel construction.

Example 3.3. Assume m = n = k = 9, d = 3, q = 2. Then

S = {(111111000111000000), (111000111111000000), (000111111111000000)}

is the set of identifying vectors. There exists constant dimension codes

CF1 =

{
rs

 I3 O D11 O O

O I3 O O D12

O O O I3 D13

 :

 D11 O

O D13

O D13

 ∈ DF1

}
,
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CF2 =

{
rs

 I3 D21 O O O

O O I3 O D22

O O O I3 D23

 :

 D21 O

O D22

O D23

 ∈ DF2

}
,

CF3 =

{
rs

 O I3 O O O

O O I3 O D53

O O O I3 D54

 :

(
D53

D54

)
∈ DF3

}
,

where CF1 is a (18, 227, 6, 9) lifted Ferrers diagram rank-metric code, CF2 is a (18, 227, 6, 9)

lifted Ferrers diagram rank-metric code, and CF3 is a (18, 224, 6, 9) lifted Ferrers di-

agram rank-metric code by Lemma 2.8, Lemma 2.9 and Lemma 2.10. Then |CF | =

|CF1 |+|CF2|+|CF3| = 2×227+224 = 285212672. By Lemma 2.14, N4 =
∑6

j=3Aj(Q) =

48173119697085439. It is clear that the maximal size of C1 ∪ C2 is A2(9, 6, 9)× 263 +

A2(9, 6, 9) ×
∑6

j=3Aj(Q). Then A2(18, 6, 9) ≥ 1 × 263 + 1 × 48173119697085439 +

285212672 = 9271545156837073919, which exceeds the current best bound A2(18, 6, 9) =

9271545156585415680 in [16].

Corollary 3.4. Let m = n = k = 9 and d = 3. Then

Aq(18, 6, 9) ≥ Aq(9, 6, 9)× q63 + Aq(9, 6, 9)×
6∑
j=3

Aj(Q) + 2× q27 + q24.

Corollary 3.5. Combining with the Johnson type bound in Lemma 2.15, then

Aq(17, 6, 8) ≥ 1

qn + 1

(
q63 +

6∑
j=3

Aj(Q) + 2× q27 + q24
)
.

Example 3.6. Let q = 2, then A2(17, 6, 8) = 1
29+1

(263+
∑6

j=3Aj(Q)+2×227+224) =
1

29+1
× 9271545156837073919 ≥ 18073187440228214, which exceeds the current best

bound 18073187439737653 in [16].

4. Conclusion

In this paper, we combined parallel linkage construction and multilevel construc-

tion and obtained new lower bounds of the sizes of constant dimension codes. By us-

ing Corollary 3.4 and the data in the website (http://subspacecodes.unibayreuth.de)

which provide tables for the presently best known lower and upper bounds for sub-

space codes, we have improved the lower bounds of Aq(18, 6, 9) (listed in Table

2). Then we combined the Johnson type bound and got better lower bounds of

Aq(17, 6, 8).
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q Corollary 3.4 [16]

2 9271545156837073919 9271545156585415680

3 1144661280188113244282469293295 1144661280188113229313703859802

4
850710581461828032765396613918

44343808

850710581461828032765039140698

02090496

5
108420289965710977906690846620

4619648291015632

108420289965710977906690845136

3063099218750007

7
174251503388975551318884922599

501083078777442606195515

174251503388975551318884922599

369849935281754612330830

8
784637723721919791138381634635

240574256113712612612505600

784637723721919791138381634635

235743275201736965558894592

9
131002051249386633920687030232

9188829727611866588380431671613

131002051249386633920687030232

9188713507904303585133560754636

Table 1. Aq(18, 6, 9)
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[12] È. M. Gabidulin, Theory of codes with maximum rank distance. Problemy Inf. Transmiss,

21(1): 3-16, 1985.

[13] H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Adv.

Math. Commun, 10(3): 525-540, 2016.



NEW CONSTANT DIMENSION SUBSPACE CODES 13

[14] D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and an

improved lower bound, [Online]. Available: https://arxiv.org/abs/1705.03835, May 2017.

[15] D. Heinlein and S. Kurz, Coset construction for subspace codes, IEEE Trans. Inform. Theory,

63(12): 7651-7660, December 2017.

[16] D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, [Online].

Available: https://arxiv.org/abs/1601.02864v3, December 2019.
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[23] K. Otal, F. Özbudak, Cyclic subspace codes via subspace polynomials, Des., Codes Cryptogr.,

85(2): 191-204, 2017.

[24] W. Zhao, X. Tang, A characterization of cyclic subspace codes via subspace polynomials. Finite

Fields Their Appl., 57: 1-12, 2019.

[25] L. Xu and H. Chen, New constant-dimension subspace codes from maximum rank distance

codes, IEEE Trans. Inf. Theory, 64: 6315-6319, 2018.

[26] Shu-Tao Xia, Fang-Wei Fu, Johnson type bounds on constant dimension codes. Des. Codes

Cryptogr. 50(2): 163-172, 2009.

[27] T. Zhang, G. Ge, Constructions of optimal Ferrers diagram rank metric codes. Des. Codes

Cryptogr. 87(1): 107-121, 2019.

College of Computer Science and Technology , Nanjing University of Aeronautics and Astronau-

tics, Nanjing, 211100, P. R. China

E-mail address: niuajm@163.com

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing,

211100, P. R. China

E-mail address: yueqin@nuaa.edu.cn

College of Computer Science and Technology , Nanjing University of Aeronautics and Astronau-

tics, Nanjing, 211100, P. R. China

E-mail address: dthuang666@163.com


