
Jump and Hop Randomness Tests for Binary Sequences

Haitao Li, Yang Liu, Ming Su∗, and Gang Wang
Department of Computer Science

Nankai University, Tianjin, P. R. China

Abstract

Linear complexity test included in the NIST test suite only checks whether or not the
observed linear complexity is close to the expected linear complexity. To take full ad-
vantage of the information of linear complexity profile, we propose two randomness tests
including a jump test based on the jump complexity, i. e., the number of changes in the
linear complexity profile of a sequence, and a hop test checking the sum of jump heights
at intervals. By using an iterative algorithm we calculate some necessary statistical mea-
sures of a random sequence of length M, and combining with hypothesis test we determine
whether a given binary sequence is random or not. The computational complexity of the
jump test and the hop test is the same as that of the linear complexity test. Additionally, we
provide a type of sample which, having passed all tests in the NIST test suite, is rejected by
the jump test and hop test. So the proposed tests deserve to be considered.

1 Introduction

Random sequences are important in secure cryptographic systems, and are widely used in en-
cryption and wireless communications, such as random number generator used in stream ci-
phers, and authentication in the preliminary stage in the secure handshake protocols. However,
if pseudorandom sequences used in such systems show an evidence for nonrandomness, it might
give adversaries useful tips to attack these systems.

There are two typical methods to determine the randomness of a given sequence. One is
prior test which is more experimental, such as the National Institute of Standards and Technol-
ogy (NIST) test suite NIST SP800-22 [1], which are useful as a first step in determining whether
or not a generator is suitable for a particular cryptographic application. The NIST test suite is
based on the method of statistical hypothesis testing and includes 15 types of tests, namely: fre-
quency, block frequency, runs, longest run, matrix rank, DFT (spectral test), non-overlapping
template, overlapping template, a “Universal Statistical” Test, linear complexity, serial, approx-
imate entropy, cumulative sums, and two random excursions tests. It was reported that the DFT
(spectral test) and the Lempel-Ziv compression test included in the NIST test suite need to be
corrected. Then, the linear complexity test is the only one test that can check the difficulty of
prediction on sequences. The linear complexity is the length of the shortest linear feedback
∗Corresponding Author: nksuker@gmail.com

register (LFSR) that can generate the given sequence. The linear complexity profile is also an
important cryptographic characteristic of sequences. Compared with the linear complexity, the
linear complexity profile of a sequence is a measure describing the length of the shortest LFSR
that generating the current sequence at each step. Regarding the linear complexity and the linear
complexity profile, there are many theoretical research results, see Niederreiter [8, 9, 10, 11],
Rueppel [13], M. Wang and J. L. Massey [15], M. Wang [14], and the Berlekamp-Massey al-
gorithm for computing the linear complexity [6]. For truly random binary sequence, i. e., each
bit is independent and uniformly distributed, the expectation and the variance of the linear com-
plexity profile were provided, as well as the nice asymptotically behavior [12]. Combining the
theoretical results on the distribution of the linear complexity and the statistical null hypothesis
testing, the linear complexity was involved in the NIST SP 800-22 test suite.

The other is more theoretical in terms of order of magnitude of random measures. C.
Mauduit and A. Sárközy, et al., [3], [5], proposed the notion of well distribution measure,
and the correlation measure of order k to determine a give sequence is balanced or uniformly
distributed. They also provided the bounds of these measures for a truly random sequence. Ac-
cordingly, they can judge whether a sequence is random or not by estimating the order of magni-
tude of those measures, particularly for those sequence constructed by additive or multiplicative
characters, such as a family of binary sequence derived from the Legendre symbol. L. Mérai et
al. [7] studied the close relationship between the proposed random measures and the NIST test
suite. A. Winterhof discussed the linear complexity and related complexity measures[18].

Considering that the linear complexity in the NIST test suite only detects the behavior the
linear complexity profile at the end of the sequence, but not the deviation from the expected line
‘y = x/2’, K. Hamano et al. [4] proposed a new randomness test based on the linear complexity
profile of sequences, in which the total area of the closed pair of congruent triangles along the
line ‘y = x/2’ was proposed as a measure for random testing. However, they required that the
last point in the linear complexity profile must exist on the line ‘y = x/2’, their test become
complicated with mixed procedures, and a half of test blocks were wasted and not involved in
their remaining test procedure. Therefore, firstly we propose a jump test based on the jump
complexity, i. e., the number of changes in the linear complexity profile of a sequence proposed
by Niederreiter [11] and Wang [16], see details in subsection 2.2. Then we propose another test
called the hop test, checking the sum of jump heights at odd jumps. Accordingly, combining
with the hypothesis testing and the χ2 test on the P-values, we design jump test and hop test.

The paper is organized as follows. First we introduce basic concepts in Section 2. Then,
we give the detailed procedure of the jump test and the hop test in Section 3. Afterwards, we
demonstrate the advantages of our tests by providing a strong example in Section 4.

2 Background

2.1 Hypothesis Test and Testing Strategies

Let H0 denote the hypothesis that a given binary sequence is independently uniformly dis-
tributed over {0, 1}. A statistical test of randomness will first construct a test statistic X on the
sequence and then determine the probability distribution of this statistic based on the hypothesis
H0. It will produce a P-value, which is the probability of obtaining test results at least as extreme

Sequences and Their Applications (SETA) 2020 2

as the results actually observed. The significant level α of a statistic test is the lower bound of
the produced P-value to determine whether to accept H0 or not. If the P-value is smaller than α,
then H0 will be rejected. Moreover, under the hypothesis that H0 is true, when many sequences
are involved in the statistical test, those computed P-values will distribute uniformly in [0, 1].
Suppose we test a sample including s sequences and obtain s P-values accordingly, we will
determine the sample is random or not by evaluatingU, whereU is defined to check the unifor-
mity of these P-values, i. e., the P-value of the χ2 statistic χ2 = (

∑10
i=1(fi − s

10)
2)/ s

10 , in which
fi is the number of P-values that falls in the interval Ci = [0.1(i − 1), 0.1i) for i = 1, 2, . . . , 10.
A sample is regarded to be non-random whenU < 0.0001.

2.2 Linear Complexity and Related Concepts

Considering a sequence εn = ε0ε1 . . . εn−1 over Fq, the linear complexity L(εn) is defined as
the length of the shortest linear feedback shift register (LFSR) that can generate εn, i. e., there
exists L elements c0, c1, . . . , cL−1 ∈ Fq satisfying

εi+L = cL−1εi+L−1 + cL−2εi+L−2 + · · ·+ c0εi

for i = 0, 1, . . . , n− L− 1. Also we define the linear complexity of all zero sequence to be 0 for
convention.

An efficient algorithm for computing the linear complexity of a sequence εn was designed by
James L. Massey [6], derived from an iterative algorithm introduced by Berlekamp for decoding
the Bose-Chaudhuri-Hocquenghem codes with the computational complexity O(n2).

The i-th linear complexity Li(εn), 1 ≤ i ≤ n of εn is the linear complexity of the first i terms
of εn, say Li(εn) = L(ε0ε1 . . . εi−1), and we define L0(εn) = 0 for convention. Note that the
Berlekamp-Massey Algorithm produces every Li(εn), 1 ≤ i ≤ n after accomplishing each loop.
We list basic property of the i-th linear complexity of εn as follows.

Proposition 1.

Li+1(ε
n) =

Li(εn) if Li(εn) > i/2,
Li(εn) or i + 1 − Li(εn) if Li(εn) ≤ i/2.

(1)

For the second case, Li+1 equals Li or i + 1 − Li with the same probability 1
2 for a random

binary sequence.

The linear complexity profile of εn is defined as the sequential values:L1(εn), L2(εn), . . .Ln(εn).
To vividly explain the linear complexity profile, the graph of linear complexity profile is con-
structed by sequentially connecting the following points

(0, L0(ε
n)), (1, L0(ε

n)), (1, L1(ε
n)), · · · , (n, Ln−1(ε

n)), (n, Ln(ε
n)).

An example of a graph of linear complexity profile is shown in Fig. 1, where the line y = x
2 is

also added.
Because of Proposition 1, there are usually many pairs of congruent triangles in the graph

of linear complexity profile, called PCTs for short. A PCT is also shown in Fig. 1 denoted by
Tm, where m is the horizontal width of the two triangles.

Sequences and Their Applications (SETA) 2020 3

Figure 1: Graph of linear complexity profile and PCT

The jump complexity of a sequence εn, denoted by jmp(εn), is the number of changes
(“jumps”) in the linear complexity profile of εn [17], i. e., jmp(εn) is the number of positive
integers among L1(εn), L2(εn) − L1(εn), L3(εn) − L2(εn), . . . , Ln(εn) − Ln−1(εn).

Denote by Jn a random variable for the jump complexity of εn over Fq, then Niederreiter
[11] calculated the expectation E(Jn) and variance V(Jn) for the variable Jn:

E(Jn) =
(q − 1)n

2q
+

(q + 1)2 − (−1)n(q − 1)2

4(q2 + q)
−

1
(q + 1)qn , (2)

V(Jn) =


(q−1)n

2q2 −
q

(q+1)2 +
(q−1)n+q
(q+1)qn+1 −

1
(q+1)2q2n n is even,

(q−1)n
2q2 + q3−5q2+q+1

2q2(q+1)2 +
(q2−1)n+2q2−q+1

(q+1)2qn+1 − 1
(q+1)2q2n n is odd.

(3)

According to the statistical properties of the linear complexity, the NIST linear complexity
test is for determining whether or not a given sequence is complex enough to be considered
random, see detailed procedure in [1, Subsection 2.10].

3 Proposed New Random Tests

In order to calculate the area of the graph of linear complexity profile, the test proposed by
K. Hamano et al. required that the block length M is even and LM = M

2 . Accordingly, they
had to add extra steps to test the number of blocks satisfied is approximately 1

2 , making the
test procedures complicated; and nearly half of a test random sequence is not involved in the
U test. Therefore, we propose the jump test and hop test to take full advantage of the test
sequence and the whole linear complexity profile. Carter considered the random tests by using
the number of jumps and the frequency of jump heights, but determined the randomness only by
one input sequence as a block [2]. In the following, firstly we will provide an iterative algorithm
to calculate the probability distribution of the jump complexity, and the sum of jump heights at
odd jumps with the block length M.

3.1 Recursive Calculation for the Exact Distribution

Let JM be the corresponding random variable of the jump complexity of a binary sequence with
length M and JM be the probability distribution of JM. Since JM takes finite discrete values,

Sequences and Their Applications (SETA) 2020 4

JM can then be represented by a finite set of pairs as follows:

JM =
{
[d1, Pr(JM = d1)], [d2, Pr(JM = d2)], . . .

}
(4)

In order to calculateJM, we divide the graph of linear complexity profile of every sequence
with length M into the first PCT and the remaining part illustrated in Fig. 2.

Suppose the first PCT to be Ts, 1 ≤ s ≤ bM
2 c, then analyzingJM can be reduced to analyzing

the probability distribution of the remaining part JM−2s. Also, there is a special case that only
an incomplete PCT exists in the whole graph of linear complexity profile, shown in Fig. 3.
Analogously, denote by jmp(TM, j) the jump complexity for this incomplete PCT TM, j, where
j is the number of the N-th linear complexities satisfying LN = 0 for 1 ≤ N ≤ M, then we have
j ∈

{
bM

2 c, b
M
2 c+ 1, . . . , M

}
.

Figure 2: First PCT and remaining part Figure 3: One incomplete PCT TM, j derived
from εM

It is straightforward that

jmp(TM, j) =

1 j = bM
2 c, b

M
2 c+ 1, . . . , M − 1,

0 j = M.
(5)

By Proposition 1, for j = bM
2 c, b

M
2 c+ 1, . . . , M − 1, the probability of the occurrence of

TM, j is (1
2)

j+1, and the probability of the occurrence of TM,M(all 0s sequence) is (1
2)

M, which
equals that of TM,M−1.

In order to calculate JM conveniently, we introduce an operator ‘◦’ as follows:

[a, b] ◦ [c, d] = [a + c, b × d]{
[a1, b1], [a2, b2], . . .

}
◦ [c, d] =

{
[a1, b1] ◦ [c, d], [a2, b2] ◦ [c, d], . . .

}
,

where the first element of ‘[∗, ∗]’ represents a value of a random variable, and the second one
represents the occurrence probability of the value.

Then the discrete distribution JM can be calculated by

JM =
(bM

2 c⋃
j=1

JM−2 j ◦ [1, Pr(T j)]
)⋃(M⋃

j=bM
2 c

{
[1, Pr(TM, j)]

})
. (6)

Sequences and Their Applications (SETA) 2020 5

By (4), (5) and (6), the recursive algorithm for calculating JM is as follows:

Algorithm 1 The algorithm for calculating JM

Input: Sequence length M
Output: The probability distribution JM of the random variable JM

1: J0 :=
{
[0, 1]

}
, J1 :=

{
[0, 1

2], [1, 1
2]

}
2: for all i ∈ {parity(M) + 2, parity(M) + 4, parity(M) + 6, · · · , M} do
3: for all j ∈ {1, 2, · · · , b i

2c} do
4: Ji := Ji

⋃
(Ji−2 j ◦ [1, (1

2)
j])

5: end for
6: for all j ∈ {b i

2c+ 1, b i
2c+ 2, . . . , i} do

7: Ji := Ji
⋃{

[1, (1
2)

j]
}

8: end for
9: Ji := Ji

⋃{
[0, (1

2)
i]
}

10: end for
11: Return JM.

Computing JM can be regarded as a bottom-up process and its computational complexity
is of polynomial time. Some typical statistical measures of the probability distribution of JM is
shown in Table 1, matching with the explicit expectation and variance in Eq. (2) and Eq. (3).

Table 1: Statistics of the probability distribution of JM

M 50 100 150 200 500
Expectation 12.8333 25.3333 37.8333 50.3333 125.3333

Variance 6.0278 12.2778 18.5278 24.7778 62.2778
Upper 50% 13 25 38 50 125
Upper 5% 17 31 45 59 138
Upper 1% 18 33 48 62 144

Upper 0.1% 20 36 51 66 150

Taking the positive integers from the L1(εM), L2(εM) − L1(εM), . . . , LM(εM) − LM−1(εM)
and we record them as { jh1(εM), jh2(εM), jh3(εM), jh4(εM), . . .}. Define the odd hop sum to
be jh1(εM) + jh3(εM) + · · · , and the even hop sum to be jh2(εM) + jh4(εM) + · · · . It can be
seen that the addition of the odd hop sum and the even hop sum of εM is exactly LM(εM).

Now let OM be the random variable of the odd hop sum of εM, and EM the even hop sum re-
spectively. The probability distribution of OM and EM are denoted by OM and EM respectively.
For calculating OM and EM recursively, we also divide the linear complexity graph of εM into
the first PCT and the remaining part. If the first PCT is Ts, 1 ≤ s ≤ bM

2 c, the partial probability

Sequences and Their Applications (SETA) 2020 6

distribution O
(1)
M and E(1)M can be calculated as follows:

O
(1)
M =

bM
2 c⋃

s=1

[s, (
1
2
)s] ◦ EM−2s,

E
(1)
M =

bM
2 c⋃

s=1

[0, (
1
2
)s] ◦OM−2s.

(7)

If the whole graph is an incomplete PCT, we have

ohs(TM, j) =

 j + 1 j = bM
2 c, b

M
2 c+ 1, . . . , M − 1,

0 j = M,

ehs(TM, j) = 0 j = b
M
2
c, b

M
2
c+ 1, . . . , M,

where ohs(TM, j) is the odd hop sum of the sequence with linear complexity profile graph TM, j,
and ehs(TM, j) the even hop sum.

So in this case, the partial probability distribution O
(2)
M and E(2)M can be calculated by

O
(2)
M =

(M−1⋃
j=bM

2 c

{
[j + 1, (

1
2
) j+1]

})⋃{
[0, (

1
2
)M]

}
,

E
(2)
M =

M−1⋃
j=bM

2 c

{
[0, (

1
2
) j+1]

}⋃{
[0, (

1
2
)M]

}
=

{
[0, (

1
2
)b

M
2 c]

}
.

(8)

Combining (7) and (8) we have

OM = O
(1)
M

⋃
O

(2)
M =

(bM
2 c⋃

s=1

[s, (
1
2
)s] ◦ EM−2s

)⋃(M−1⋃
j=bM

2 c

{
[j + 1, (

1
2
) j+1]

})⋃{
[0, (

1
2
)M]

}
,

EM = E
(1)
M

⋃
E
(2)
M =

(bM
2 c⋃

s=1

[0, (
1
2
)s] ◦OM−2s

)⋃{
[0, (

1
2
)b

M
2 c]

}
.

Accordingly, we have the following iterative algorithm for computing OM and EM, whose com-
putational complexity is of polynomial time O(M4).

Sequences and Their Applications (SETA) 2020 7

Algorithm 2 The algorithm for calculating OM and EM

Input: Sequence length M
Output: The probability distribution of OM and EM

1: O0 :=
{
[0, 1]

}
, O1 :=

{
[0, 1

2], [1, 1
2]

}
2: E0 :=

{
[0, 1]

}
, E1 :=

{
[0, 1]

}
3: for all i ∈ {parity(M) + 2, parity(M) + 4, parity(M) + 6, · · · , M} do
4: for all j ∈ {1, 2, · · · , b i

2c} do
5: Oi := Oi

⋃
(Ei−2 j ◦ [j, (1

2)
j])

6: end for
7: for all j ∈ {b i

2c, b
i
2c+ 1, . . . , i − 1} do

8: Oi := Oi
⋃{

[j + 1, (1
2)

j+1]
}

9: end for
10: Oi := Oi

⋃{
[0, (1

2)
i]
}

11: for all j ∈ {1, 2, · · · , b i
2c} do

12: Ei := Ei
⋃
(Oi−2 j ◦ [0, (1

2)
j])

13: end for
14: Ei := Ei

⋃{
[0, (1

2)
b i

2 c]
}

15: end for
16: Return OM, EM.

Some statistics of the probability distribution of OM are shown in Table 2.

Table 2: Statistics of the probability distribution of OM

M 50 100 150 200 500
Expectation 13.1111 25.6111 38.1111 50.6111 125.6111

Variance 6.8395 13.0895 19.3395 25.5895 63.0895
Upper 50% 13 26 38 51 126
Upper 5% 17 32 45 59 139
Upper 1% 19 34 48 62 144

Upper 0.1% 22 37 52 66 150

Proposition 2. The expectation E(OM) and variance V(OM) for the random variable OM are
given by

E(OM) =
M
4
+

45 − (−1)M

72
+

3M − 10
9 · 2M ,

V(OM) =


M
8 + 191

324 +
27M2−192M+64

162·2M −
(3M−10)2

81·4M , M is even
M
8 + 367

648 +
27M2−195M+74

162·2M −
(3M−10)2

81·4M , M is odd
.

We do not present the proof here due to page limitation and will include it in future.

Remark 3. Regarding the statistic OM, E(OM) tends to be close to M
4 and V(OM) tends to be

close to M
8 when M is large enough. Similarly for the statistic JM, from (2) and (3) we also have

Sequences and Their Applications (SETA) 2020 8

E(JM) tends to be close to M
4 and V(JM) tends to be close to M

8 for binary sequence. However,
the jump complexity JM and the odd hop sum OM seem to have different characteristics. On the
one hand, OM takes value in a larger range 0 ≤ OM ≤ M while 0 ≤ JM ≤ M/2. On the other
hand, if JM is small, OM can be very large, e. g., JM = 1 and OM = M for the sequence 0 . . . 01︸ ︷︷ ︸

M

;

and if JM is large, OM can be comparatively small, e. g., JM = M/2 and OM = M/4 when
considering the sequence with the perfect linear complexity profile (1, 1, 2, 2, . . . , M/2, M/2)
if M is even. Therefore, we consider the following Jump test and Hop test based on different
statistics JM and OM.

3.2 Jump Test and Hop Test

The new test is based on the following procedure, where the random variable XM can be one of
the proposed random variables, JM or OM. We have the jump test when using JM, and the hop
test when using OM.

Procedure of New Test

S1 Partition a given binary sequence ε of length n into N disjoint blocks of length M, say
ε = εM

1 ε
M
2 . . . εM

N , where N = bn/Mc (throwing away the extra bits when n is not the
integer times of M).

S2 Let T be the upper 50% point of XM, and Φ = Pr{XM > T }.

S3 Calculate xi, which is the observed value of XM for each εM
i , i = 1, 2, . . . , N, by using

Berlekamp-Massey algorithm.

S4 Calculate p = #{xi|xi>T }
N .

S5 Calculate z = p−Φ√
Φ(1−Φ)

N

.

S6 Calculate P − value = erfc(|z|√
2
), where erfc(x) = 2√

π

∫ ∞
x e−t2dt.

Note that the value of Φ above is not exactly 50% due to the discreteness of the probability
distribution of XM. For example, for the upper 50% point of J500, we have T = 125 and
Φ = Pr{J500 > T } = 0.491568.

If H0 is true, the random variable Z should obey the standard normal distribution according
to the De Moivre-Laplace theorem in probability theory. Then we have

erfc(
|z|
√

2
) =

2
√
π

∫ ∞

|z|
√

2

e−t2dt =
2
√

2π

∫ ∞

|z|
e−

u2
2 du.

Sequences and Their Applications (SETA) 2020 9

Thus, we have erfc(|z|√
2
) = 2 Pr{Z > |z|}, implying erfc(|z|√

2
) can be used as the P-value of the

random variable Z.
In order to apply the jump test or hop test, we need to calculate the jump complexity or odd

hop sum of a sequence (see step S3) in each block, with computational complexity O(M2) by
using the Berlekamp-Massey algorithm. Thus, the computational complexity of our new test
is O(M2) · n

M = O(M · n), almost the same as that of NIST linear complexity test. We also
experimentally provide comparison for time cost of these tests in Table 3. The running CPU
is Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, total memory is 251G bytes, and we take
M = 500. From Table 3 we see that the time costs of these tests are approximately the same,
and they are linear dependent with the size n.

Table 3: Time costs of the mentioned tests (in seconds)

Test
Size (n bits)

224 225 226 227 228 229 230

NIST LC Test 1.49 3.03 5.91 10.71 21.37 43.02 83.86
Jump Test 1.34 2.83 5.38 10.90 20.97 41.79 83.66
Hop Test 1.47 2.76 5.34 10.93 22.61 44.33 85.54

4 Experimental Results

In the following tests, the block size M is set to be as suggested, and the length of a sample
is 109. A sample will be divided into 1000 sequences of length 106 and will produce 1000
P-values. The final decision is derived from these 1000 P-values.

We construct a sample that passes all the NIST tests, but is rejected by the Jump test and Hop
test, shown in Fig. 4. For every block of length 500, we first fill the whole block with a random
sequence. Then we take necessary adjustment on each block, setting its linear complexity profile
from 40th bit to 490th bit to be the format in Fig. 4(a) or 4(b), depending on the parity of the
number of jumps in the first 40 bits. The last 10 bits of each block are filled with random bits.

(a) The number of jumps in the first 40 bits is Even (b) The number of jumps in the first 40 bits is Odd

Figure 4: Example-Passing NIST test suite but rejected by Jump test and Hop test

Observing the linear complexity profile of each block, the jump complexity of each block
is at least 111 + 46 + 1 = 158, much larger than the selected upper point TJ = 125, so the

Sequences and Their Applications (SETA) 2020 10

P-value is zero for each sequence. Moreover, the odd hop sum for each sequence is at least
46 × 2 + 32 × 1 + 1 × 22 = 146, much larger than the selected upper point TH = 126. This is
the reason why each sequence is rejected by the jump test and the hop test.

Actually, we can construct many samples having the same format of linear complexity
profile in Fig. 4(a) or 4(b), by using the continued fractions and the increment sequence de-
rived from the linear complexity profile [14], and the number of them can be estimated at least
2111×1+46×2+22, when only considering the middle 450 bits. Accordingly, we have designed a
scheme generating 500 random bits in each block first, then adjust each sequence obeying the
same linear complexity profile format in Fig. 4(a) or 4(b), and obtain a sample of 109 bits. Very
interestingly, the constructed sample passes all tests included in the NIST test Suite (188 tests)!
But it is rejected by the jump test and hop test.

Remark 4. Randomness tests for pseudorandom generators usually include a random measure
with low computational complexity to deal with test sequences of large length. Moreover,
the exact distribution of the random measure should be determined in order to combine with
statistical hypothesis test. Besides, some nice pseudorandom sequence like Legendre sequence
still passes the NIST test suite, as well as the jump test and the hop test.

Let p be a prime. The p-periodic Legendre sequence is defined by

`i =


[
1 +

(
i
p

)]/
2, if i , 0 (mod p)

0, otherwise
(9)

We have the following conjecture, revealing that the value of jump complexity JM and the value
of odd hop sum OM of Legendre sequence do not fluctuate much, this is an explanation why
Legendre sequence passes the jump test and the hop test.

Conjecture 5. For the block size M large enough (e. g., M ≥ 500 as NIST suggests), consider-
ing the part of Legendre sequence (9) with start position i ≥ 0 of length M (`i, . . . , `i+M−1), we
denote by Ji,M,p the number of jumps of this partial Legendre sequence, and Oi,M,p the odd hop
sum of this partial Legendre sequence. Then for any p > M, and i1, i2 ≥ 0 we have

∣∣∣Ji1,M,p − Ji2,M,p
∣∣∣ < M

4
,∣∣∣Oi1,M,p −Oi2,M,p

∣∣∣ < M
4

.

We apply the NIST random test suite to Legendre sequence with p = 231 − 1, and take
n = 109, M = 500. We divide the test sample into 1000 sequences and calculate one P-value
for each sequence. The test results is shown in Table 4, including Jump Test and Hop Test.
The minimum passing rate for each statistical test is approximately = 980 for a sample of 1000
sequences, and the minimum passingU value of these 1000 P-values for each statistical test is
0.0001. Thus, the Legendre sequence passes listed partial NIST tests as well as our tests.

Sequences and Their Applications (SETA) 2020 11

Table 4: Random test results for Legendre sequence with p = 231 − 1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION
STATISTICAL

TEST
94 111 105 114 91 95 105 108 93 84 0.457825 991/1000 Frequency
113 104 91 100 97 101 92 96 106 100 0.916599 987/1000 BlockFrequency
96 97 90 125 101 90 105 88 103 105 0.308561 987/1000 CumulativeSums
103 101 93 116 107 84 107 98 86 105 0.442831 992/1000 CumulativeSums
95 92 105 109 91 101 100 91 83 133 0.043368 987/1000 Runs
94 92 97 126 86 116 84 92 116 97 0.032705 989/1000 LongestRun
101 108 109 89 97 115 111 105 70 95 0.072964 990/1000 Rank
100 110 99 104 109 86 104 81 92 115 0.304126 992/1000 FFT
105 87 97 89 117 102 89 102 106 106 0.520102 982/1000 OverlappingTemplate
105 98 98 97 106 104 83 101 103 105 0.899171 991/1000 Universal
108 101 95 89 96 113 96 104 89 109 0.709558 984/1000 ApproximateEntropy
93 105 88 99 107 94 107 91 106 110 0.769527 993/1000 Serial
86 93 106 100 95 117 108 99 94 102 0.637119 991/1000 Serial
83 104 100 80 105 109 96 118 101 104 0.231956 994/1000 LinearComplexity
87 111 100 118 96 104 94 98 91 101 0.566688 991/1000 Jump Test
108 92 79 107 84 105 98 99 107 121 0.124476 993/1000 Hop Test

5 Acknowledgement

The authors would like to express their sincere thanks to the anonymous reviewers for providing
valuable suggestions. They are partially supported by Tianjin Key Research and Development
Project 19YFZCSF00900.

References

[1] A statistical test suite for random and pseudorandom number generators for cryptographic
applications, special publication 800-22. Tech. rep.

[2] Carter, G.D.: Aspects of Local Linear Complexity. Ph. D. thesis, University of London
(1989)

[3] Christian Mauduit, A.S.: On finite pseudorandom binary sequences i: Measure of pseudo-
randomness, the legendre symbol. Acta Arithmetica 82(4), 365–377 (1997)

[4] Hamano, K., Sato, F., Yamamoto, H.: A new randomness test based on linear complexity
profile. IEICE Transactions 92-A(1), 166–172 (2009)

[5] Julien Cassaigne, Christian Mauduit, A.S.: On finite pseudorandom binary sequences vii:
The measures of pseudorandomness. Acta Arithmetica 103(2), 97–118 (2002)

Sequences and Their Applications (SETA) 2020 12

[6] Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Information Theory
15(1), 122–127 (1969)

[7] Mérai, L., Rivat, J., Sárközy, A.: The measures of pseudorandomness and the NIST tests.
In: Number-Theoretic Methods in Cryptology - First International Conference, NuTMiC
2017, Warsaw, Poland, September 11-13, 2017, Revised Selected Papers. pp. 197–216
(2017)

[8] Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Advances
in Cryptology - EUROCRYPT ’87, Workshop on the Theory and Application of of Cryp-
tographic Techniques, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings. pp.
37–51 (1987)

[9] Niederreiter, H.: The probabilistic theory of linear complexity. In: Advances in Cryptol-
ogy - EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings. pp. 191–209 (1988)

[10] Niederreiter, H.: Keysystem sequences with a good linear complexity profile for every
strating point. In: Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory
and Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989,
Proceedings. pp. 523–532 (1989)

[11] Niederreiter, H.: The linear complexity profile and the jump complexity of keystream
sequences. In: Advances in Cryptology - EUROCRYPT ’90, Workshop on the Theory
and Application of of Cryptographic Techniques, Aarhus, Denmark, May 21-24, 1990,
Proceedings. pp. 174–188 (1990)

[12] Rueppel, R.A.: Linear complexity and random sequences. In: Advances in Cryptology -
EUROCRYPT ’85, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Linz, Austria, April 1985, Proceedings. pp. 167–188 (1985)

[13] Rueppel, R.A.: Analysis and Design of Stream Ciphers. Berlin, Germany: Springer-Verlag
(1986)

[14] Wang, M.: Linear complexity profiles and continued fractions. In: Advances in Cryptol-
ogy - EUROCRYPT ’89, Workshop on the Theory and Application of of Cryptographic
Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings. pp. 571–585 (1989)

[15] Wang, M., Massey, J.L.: The characterization of all binary sequences with perfect linear
complexity profiles. In: EUROCRYPT. pp. 35–36 (1986)

[16] Wang, M.: Cryptographic Aspects of Sequence Complexity Measures, Ph.D. dissertation.
ETH Zurich (1988)

[17] Wang, M.: Linear complexity profiles and jump complexity. Information Processing Let-
ters 61(3), 165 – 168 (1997)

[18] Winterhof, A.: Linear complexity and related complexity measures. In: Selected Topics
in Information and Coding Theory. pp. 3–40. World Scientific, Singapore (2010)

Sequences and Their Applications (SETA) 2020 13

	Introduction
	Background
	Hypothesis Test and Testing Strategies
	Linear Complexity and Related Concepts

	Proposed New Random Tests
	Recursive Calculation for the Exact Distribution
	Jump Test and Hop Test

	Experimental Results
	Acknowledgement

