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Abstract

The main purpose of this extended abstract is to establish a connection between
minimizing the maximal cross-correlation amplitude of certain codebooks and the
generalized Erdős-Falconer distance problem in vector spaces over finite fields stud-
ied in number theory and additive combinatorics. Our results also contain some
constructions of asymptotically optimal codebooks.

1 Introduction

An (N,K)-codebook C = {c1, . . . , cN} ⊆ CK consists of N complex vectors of length K
such that ‖ci‖2 = 1 for all 1 ≤ i ≤ N , which is also termed as a signal set or a frame.
Define the maximum cross-correlation amplitude Imax(C) of an (N,K)-codebook C as

Imax(C) = max
1≤i<j≤N

|〈ci, cj〉| (1)

where 〈ci, cj〉 denotes the standard inner product of the complex vectors ci and cj. For
a given K, it is desirable to construct an (N,K)-codebook C with as large N and small
Imax(C) as possible due to the practical applications in a variety of areas such as code-
division multiple-access communication systems [15, 26]; combinatorial designs [6]; com-
pressed sensing [1, 4, 10, 22]; coding theory [3]; and more. In the literature, a lower bound
on Imax(C) with respect to N and K was proved in [37], which is known as the Welch
bound.
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Theorem 1 (Welch bound). For any (N,K)-codebook C with N ≥ K, we have

Imax(C) ≥ Iwel(N,K) :=

√
N −K

(N − 1)K
(2)

where the equality holds if and only if
∣∣〈ci, cj〉∣∣ =

√
N−K

(N−1)K for all 1 ≤ i 6= j ≤ N .

A codebook achieving the Welch bound is usually called a maximum-Welch-bound-
equality (MWBE) codebook [39]. It is also known as the equiangular tight frame [5] in frame
theory and equivalent to line packing in Grassmannian spaces [6]. In the literature, cer-
tain families of MWBE codebooks were deterministically constructed via discrete Fourier
transform matrices [31, 39]; extended codes from any ideal two-level auto-correlation se-
quences [15, 39, 40]; conference matrices [6, 34]; difference sets in groups [8, 17, 39]; Steiner
systems [13], and so on.

As pointed out by Sarwate in [31], it is very hard to construct an MWBE codebook in
general. Hence there have been a number of attempts to construct codebooks nearly meet-
ing the Welch bound as well, that is, the maximum cross-correlation amplitude Imax(C)
is slightly higher than the corresponding Welch bound, but asymptotically achieves it for
large enough N . In this paper, we say an infinite family of (N,KN)-codebooks {CN}N≥1 is
asymptotically optimal with respect to the Welch bound if limN→∞ Imax(CN)/Iwel(N,KN) =
1. In the literature, asymptotically optimal codebooks have been constructed by using
codes and codebooks [31]; almost difference sets [8]; relative difference sets [42]; binary
sequences [40]; character sums [16, 24, 25]; Cayley sum graphs [32], and so forth.

On the other hand, it is known that an (N,K)-codebook C cannot meet the Welch
bound if C is a real codebook with N > K(K+1)/2 or a complex codebook with N > K2.
In these cases, the following lower bound, called the Levenshtein bound, is known ([21]).

Theorem 2 (Levenshtein bound). For a real (N,K)-codebook C with N > K(K + 1)/2,

Imax(C) ≥ I
(R)
lev (N,K) :=

√
3N −K2 − 2K

(N −K)(K + 2)
. (3)

For a complex (N,K)-codebook C with N > K2,

Imax(C) ≥ I
(C)
lev (N,K) :=

√
2N −K2 −K

(N −K)(K + 1)
. (4)

Many publications have studied constructions of codebooks meeting the Levenshtein
bound by using codes [3]; quadratic Gauss sums [38]; non-linear planar functions [9]; bent
functions [41]; generalized bent Z4-valued quadratic forms [30], and so on.

The generalized Erdős-Falconer distance problem in vector spaces over finite fields
is a finite field analogue of the Erdős and Falconer distance problems [11, 12] over Rd

in discrete geometry, and has been extensively studied in number theory and additive
combinatorics; see [20, 35, 36], for example. In this extended abstract, we shall investigate
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certain families of codebooks obtained from polynomials over finite fields. These families
provide many new asymptotically optimal codebooks and also contain optimal codebooks
constructed in Wootters-Fields [38] and Ding-Yin [9]. Then we establish a connection
between minimizing the maximum cross-correlation amplitude of these codebooks and
the generalized Erdős-Falconer distance problem.

The remainder of this extended abstract is organized as follows. In Section 2, we
present preliminary notations and results on finite fields. In Section 3, we briefly review
the generalized Erdős-Falconer distance problem. In Section 4, we first define families
of codebooks and then establish a relationship between minimizing the maximum cross-
correlation amplitude of these codebooks and the generalized Erdős-Falconer distance
problem. Also we provide families of asymptotically optimal codebooks, together with
some extensions of results due to Koh-Shen [20]. In Section 5, some concluding remarks
are made.

2 Preliminaries

Let G be a finite abelian group where the operation is expressed by addition here. A
character µ on G is a group homomorphism from G to the multiplicative group of the
complex field C, that is, for any a, b ∈ G, we have µ(a + b) = µ(a)µ(b) and |µ(a)| = 1.
Moreover we have µ(−a) = µ(a) for every character µ. If a character µ such that for any
a ∈ G, µ(a) = 1, then µ is called the principal character of G. The set of all characters
of G forms an abelian group which is referred to as the character group of G and denoted
by Ĝ. Here the operation is the multiplication of characters, that is, for µ1, µ2 ∈ Ĝ, we
have (µ1 · µ2)(a) := µ1(a)µ2(a) for all a ∈ G. It is known that Ĝ is isomorphic to G.

Let q = pt where p is a prime number and t ≥ 1 is an integer. In this extended
abstract, Fq denotes a finite field of order q. Also F+

q and F∗q mean the additive and
multiplicative group of Fq, respectively. Note that F+

q is isomorphic to the direct product
(Z/pZ)t and F∗q = Fq \ {0}. The following is the definition of additive characters of Fq.

Definition 3. An additive character χ of Fq is a character on the additive group F+
q .

For t ≥ 1, Fq is the extension field of Fp = Z/pZ of degree t, which has the same
structure as a linear space over Fp of dimension t. Let Trq/p be the trace function from
Fq to Fp defined as

Trq/p(x) := x+ xp + · · ·+ xp
t−1

for any x ∈ Fq. This is a linear mapping from Fq to Fp, that is, for any x, y ∈ Fq and α ∈
Fp, we have Trq/p(x) ∈ Fp, Trq/p(x+ y) = Trq/p(x) + Trq/p(y) and Trq/p(αx) = αTrq/p(x).
Notice that Trq/p is surjective.

Note that additive characters of Fq are expressed by Trq/p. For α ∈ Fq, let χα(x) =

exp(2πi
p
·Trq/p(αx)) for all x ∈ F+

q . Then it holds that F̂+
q = {χα | α ∈ Fq}. In particular,

χα is principal if and only if α = 0, and χ1(x) = exp(2πi
p
·Trq/p(x)) is said to be canonical.

The following proposition shows the orthogonal relation of additive characters.
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Proposition 4. ∑
x∈Fq

χα(x) =

{
q α = 0;

0 α ∈ F∗q.
(5)

Throughout this extended abstract, we use the following asymptotic notations. Let
f(q) > 0, g(q) > 0 be functions of q. Then (1) f = O(g) if lim sup

q→∞
f(q)/g(q) < ∞; (2)

f = Ω(g) if lim inf
q→∞

f(q)/g(q) > 0; (3) f = Θ(g) if f = O(g) and f = Ω(g); (4) f ≈ g if

lim
q→∞

f(q)/g(q) = 1.

3 The generalized Erdős-Falconer distance problem

This section briefly reviews the generalized Erdős-Falconer distance problem. The original
Erdős and Falconer distance problems consider the size or Lebesgue measure of the set of
Euclidean distances between points in a given large set of points in Rd with d ≥ 2, which
are well-studied in discrete geometry; for details, see e.g. [11, 12, 14, 27].

Let d ≥ 2 be an integer and q denote a prime power. For each x = (x1, . . . , xd) ∈ Fdq ,
let ||x|| = x ·x = x21 + · · ·+x2d where “·” denotes the dot product. For subsets E ,F ⊂ Fdq ,
the distance set of E and F , denoted by ∆(E ,F), is defined as

∆(E ,F) := {||x− y|| ∈ Fq | x ∈ E ,y ∈ F}. (6)

Clearly, 1 = |{0}| ≤ |∆(E ,F)| ≤ |Fq| = q. The Erdős-Falconer distance problem in the
d-dimensional vector space Fdq concerns the cardinality of ∆(E ,F) for sufficiently large
q, which was firstly studied by Bourgain-Katz-Tao [2] in the context of sum-product
estimates over finite fields in additive combinatorics; see also [14]. Bourgain-Katz-Tao [2]
proved that if d = 2, q is a prime with q ≡ 3 (mod 4) and |E| = Θ(qδ) for some 0 < δ < 2,

then there exists ε > 0 depending on δ such that ∆(E , E) = Ω(|E| 12+ε). After this work,
Iosevich-Rudnev [18] proved that for each d ≥ 2 and sufficiently large odd prime powers
q,

|∆(E , E)| = Ω
(

min

{
q,
|E|
q

d−1
2

})
when |E| = Ω(q

d
2 ). In particular, Iosevich-Rudnev [18] observed that |∆(E , E)| = Θ(q)

if |E| = Ω(q
d+1
2 ), which can be regarded as a finite field analogue of the result due to

Falconer [12] that the distance set determined by a subset of Rd with d ≥ 2 of Hausdorff
dimension greater than (d+ 1)/2 has positive Lebesgue measure ([18, p.6130]).

After these works, many publications have also developed the study of the general-
ized Erdős-Faloconer distance problem which concerns distance sets determined by more
general polynomials; see e.g. [20, 35, 36]. Let P ∈ Fq[X1, . . . , Xd] where Fq[X1, . . . , Xd]
denotes the set of polynomials with coefficients over Fq with d variables X1, . . . , Xd. Let
E ,F ⊂ Fdq . The distance set of E and F with respect to P , denoted by ∆P (E ,F), is defined
as

∆P (E ,F) := {P (x− y) ∈ Fq | x ∈ E ,y ∈ F}. (7)
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As in the case of ∆(E ,F), it holds that 1 ≤ |∆P (E ,F)| ≤ q. Clearly when P (X1, . . . , Xd) =
X2

1 + · · · + X2
d , then ∆P (E ,F) = ∆(E ,F). The following theorem was proved by Koh-

Shen [20] which is a generalized version of the analogous result by Iosevich-Rudnev [18]
of the Falconer’s result mentioned in the previous paragraph.

Theorem 5 ([20]). Let d ≥ 2 be an arbitrarily fixed integer and q denote a prime power.
Recall that χ1 denotes the canonical additive character of Fq. Let P ∈ Fq[X1, . . . , Xd].
Suppose that the following condition (∗) holds for sufficiently large q.

(∗) For every c ∈ Fdq and c ∈ F∗q, it holds that∣∣∣∣∑
x∈Fd

q

χ1(cP (x) + c · x)

∣∣∣∣ = O
(√

qd
)
. (8)

Then for any E ,F ⊂ Fdq, it holds when |E||F| = Ω(qd+1) that |∆P (E ,F)| = Θ(q). In

particular, if E = F , then it holds when |E| = Ω(q
d+1
2 ) that |∆P (E , E)| = Θ(q).

The proof of Theorem 5 (and Theorem 4.4) in [20] implies the following theorem
showing the implied constants in asymptotic notations in Theorem 5 under a stronger
condition.

Theorem 6. Let d ≥ 2 be an arbitrarily fixed integer and q denote a prime power. Let
P ∈ Fq[X1, . . . , Xd]. Suppose that the following condition (∗∗), which is stronger than (∗)
in Theorem 5, holds for sufficiently large q.

(∗∗) There exists a function fP (q) of q such that for every c ∈ Fdq and c ∈ F∗q,∣∣∣∣∑
x∈Fd

q

χ1(cP (x) + c · x)

∣∣∣∣ ≤ fP (q) (9)

and
fP (q) ≈

√
qd. (10)

Then for any 0 < ε < 1 and E ,F ⊂ Fdq, it holds that |∆P (E ,F)| ≥ εq if |E||F| ≥ δqf 2
P (q) ≈

δqd+1 where δ = ε/(1 − ε). In particular, if E = F , then it holds that |∆P (E , E)| ≥ εq if

|E| ≥
√
δ · √qfP (q) ≈

√
δ · q d+1

2 .

Remark 7. If one replaces the condition (10) by a weaker condition that fP (q) ≤ C
√
qd

with C > 1, then the discussion in [20] implies a weaker claim that |∆P (E ,F)| ≥ εq
when |E||F| ≥ C2 · δqf 2

P (q), which is much greater than δqd+1 for sufficiently large q. As
will be shown in Theorem 11 and Remark 14, the condition (10) is optimal, and thus
under the discussion in [20], the condition (10) optimizes the lower bound of |E||F| so
that |∆P (E ,F)| ≥ εq.

It will turn out in the next section that the condition (∗) or (∗∗) holds if and only if
codebooks defined in the next section have the maximal cross-correlation amplitude with
the optimal order of magnitude.
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4 Codebooks from polynomials over finite fields

This section first defines families of codebooks from polynomials over finite fields. Then
the main result in this extended abstract is shown, together with some constructions of
asymptotically optimal codebooks with respect to the Welch bound. Constructions here
also generate codebooks meeting the Levenshtein bound provided in Wootters-Fields [38]
and Ding-Yin [9].

Definition 8. Let d ≥ 1 be an integer and q a prime power. Let V := Fq × Fdq . For a
polynomial P ∈ Fq[X1, . . . , Xd], define DP := {(x,x) ∈ V | x + P (x) = 0}. Note that V
forms an abelian group of order qd+1 and |DP | = qd. For each character ψ of V , define a
vector cψ ∈ Cqd as follows:

cψ :=
1√
qd

(ψ(d))d∈DP
. (11)

Let ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Cqd denote a unit-norm vector such that the ith
coordinate of ei is 1 and all other coordinates are 0. Denote Eqd := {ei : 1 ≤ i ≤ qd}.
Then

CP := {cψ | ψ is a character of V } ∪ Eqd (12)

is a (qd+1 + qd, qd)-codebook.

Note that each character ψ of V can be expressed using the canonical additive character
χ1 of Fq as the following form:

ψ((x,x)) = χ1

(
(x,x) · (a, a)) (∀(x,x) ∈ V ) (13)

for (a, a) ∈ V uniquely determined by ψ. Also ψ is principal if and only if (a, a) =
(0, . . . , 0). Thus,

CP = {c(a,a) | (a, a) ∈ V } ∪ Eqd , (14)

where for each (a, a) ∈ V , the vector c(a,a) is defined as

c(a,a) :=
1√
qd

(
χ1

(
(x,x) · (a, a)

))
(x,x)∈DP

. (15)

Remark 9. Suppose d = 1. Then the (q2 + q, q)-codebook CP is a generalization of the
codebook with the same parameters studied by Wootters-Fields [38] and Ding-Yin [9].

Remark 10. By the definition of the canonical additive character of Fq in Section 2, CP is
a real codebook if and only if q is a power of 2. Otherwise, CP is a complex codebook.

The following is the main theorem in this extended abstract.

Theorem 11. Let d ≥ 1 be an arbitrarily fixed integer and q denote a sufficiently large
prime power. Then the condition (∗) in Theorem 5 holds if and only if

Imax(CP ) = O

(
1√
qd

)
. (16)
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Moreover, the condition (∗∗) in Theorem 6 holds if and only if there exists a function
fP (q) of q such that

Imax(CP ) ≤ fP (q)

qd
≈ 1√

qd
. (17)

Remark 12. Suppose that the equation (17) holds. Then for each d ≥ 2, CP asymptotically
meets the Welch bound. In fact, for each d ≥ 2, CP is a (qd+1 + qd, qd)-codebook and

Iwel(q
d+1 + qd, qd) =

√
(qd+1 + qd)− qd

(qd+1 + qd − 1) · qd
=

√
q

qd+1 + qd − 1
≈ 1√

qd
.

Thus,

lim
N→∞

Imax(CP )

Iwel(N,K)
= lim

q→∞

Imax(CP )

Iwel(qd+1 + qd, qd)
= 1.

Remark 13. Suppose that the equation (17) holds. Then, if d = 1 and q is odd, CP
asymptotically meets the Levenshtein bound. In fact, since q is odd, CP is a complex
(q2 + q, q)-codebook by Remark 10. In this case,

I
(C)
lev (q2 + q, q) =

√
2(q2 + q)− q2 − q
(q + 1)(q2 + q − q)

=
1
√
q
.

Thus,

lim
N→∞

Imax(CP )

I
(C)
lev (N,K)

= lim
q→∞

Imax(CP )

I
(C)
lev (q2 + q, q)

= 1.

If d = 1 and q is even, then CP is a real (q2 + q, q)-codebook by Remark 10. Thus the
equation (17) cannot hold by the Levenshtein bound for real codebooks. In this case, the
right hand side of (17) should be

√
2/q. Also, the right hand side of (10) should be

√
2q.

Remark 14. Theorem 11 and the Welch bound imply that for each d ≥ 2, the condition
(10) is optimal in the sense that if the condition (9) holds for fP (q), then fP (q) cannot

be smaller than C
√
qd with 0 < C < 1 for any sufficiently large q.

Theorems 5, 6 and 11 directly give the following corollary which shows an interesting
connection between the Erdős-Falconer distance problem and minimizing Imax(CP ) of the
(qd+1 + qd, qd)-codebook CP with d ≥ 2.

Corollary 15. Let d ≥ 2 be an arbitrarily fixed integer and q a sufficiently large prime
power. Suppose that the equation (16) in Theorem 11 holds. Then, if E ,F ⊂ Fdq with
|E||F| = Ω(qd+1), then |∆P (E ,F)| = Θ(q). In particular, if E = F , then it holds when

|E| = Ω(q
d+1
2 ) that |∆P (E , E)| = Θ(q).

Moreover if the equation (17) holds, then for any 0 < ε < 1 and E ,F ⊂ Fdq, it holds
that |∆P (E ,F)| ≥ εq if |E||F| ≥ δqf 2

P (q) ≈ δqd+1 where δ = ε/(1 − ε). In particular, if

E = F , then it holds that |∆P (E , E)| ≥ εq if |E| ≥
√
δ · √qfP (q) ≈

√
δ · q d+1

2 .

Now we give a proof of Theorem 11.
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Proof of Theorem 11. We give only a proof of the first claim since the second claim follows
from the proof of the first one.

Let C ′P = CP \ Eqd . Note that 〈ei, ej〉 = 0 for 1 ≤ i 6= j ≤ qd, and |〈ei, c〉| = 1/
√
qd for

every pair of 1 ≤ i ≤ qd and c ∈ C ′P . Thus to prove the first claim, it suffices to show the
following claim: for each pair of c1, c2 ∈ C ′P with c1 6= c2, it holds that

|〈c1, c2〉| = O

(
1√
qd

)
(18)

if and only if the condition (∗) in Theorem 5 holds.
If c1, c2 ∈ C ′P with c1 6= c2, then c1 = c(a,a) and c2 = c(b,b) for some (a, a), (b,b) ∈ V

with (a, a) 6= (b,b). Let (c, c) = (a − b, a − b) ∈ V \ {(0, . . . , 0)}. Then, using the
discussion in Vinh [35],

|〈c1, c2〉| =
1

qd

∑
(x,x)∈DP

χ1

(
(x,x) · (c, c))

=
1

qd

∑
(x,x)∈Fq×Fd

q

x+P (x)=0

χ1

(
xc+ x · c)

=
1

qd
· 1

q

∑
(x,x)∈Fq×Fd

q

∑
s∈Fq

χ1(s(x+ P (x)))χ1

(
xc+ x · c)

=
1

qd
· 1

q

∑
s,x∈Fq

χ1

(
(s+ c)x)

∑
x∈Fd

q

χ1(sP (x) + x · c)

=
1

qd

∑
x∈Fd

q

χ1(−cP (x) + x · c),

(19)

where the third and last equalities in (19) follow from Proposition 4.
If c = 0 and c = (c1, . . . , cd) 6= (0, . . . , 0), then it holds by Proposition 4 that

∑
x∈Fd

q

χ1(−cP (x) + x · c) =
∑
x∈Fd

q

χ1(x · c) =
d∏
i=1

(∑
x∈Fq

χ1(cix)

)d
= 0. (20)

Thus by (19) and (20), the equation (18) holds if and only if the condition (∗) in
Theorem 5 holds.

The rest of this section is to construct polynomials P from non-linear planar functions
which CP asymptotically meeting the Welch or Levenshtein bounds.

Definition 16. Let f be a function from F+
q to F+

q . Then f is called a non-linear planar
function over F+

q if f is not a group homomorphism from F+
q to itself and the function

f(X + a)− f(X) is a permutation of Fq for each a ∈ F∗q.
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Note that if q is even, there does not exist non-linear planar functions over F+
q , while

there always exists a non-linear planar function over F+
q , which is a polynomial in Fq[X],

if q is odd.

Lemma 17 (e.g. Lemma 3 in [9]). Let f be a non-linear planar function over F+
q . Then

it holds that ∣∣∣∑
x∈Fq

χ1(f(x))
∣∣∣ =
√
q. (21)

Theorem 18. Let d ≥ 2 be an arbitrarily fixed integer. Suppose that q is an odd prime
power. For each 1 ≤ i ≤ d, let fi(Xi) be a non-linear planar function over F+

q . If

P (X1, . . . , Xd) =
∑d

i=1 fi(Xi), then CP is a (qd+1 + qd, qd)-codebook with

Imax(CP ) =
1√
qd
. (22)

Proof. By the proof of Theorem 11, it suffices to show that for each c ∈ F∗q and c =
(c1, . . . , cd) ∈ Fdq , ∣∣∣∣∑

x∈Fd
q

χ1(−cP (x) + x · c)

∣∣∣∣ =
√
qd. (23)

By the assumption of P , it holds for each x = (x1, . . . , xd) ∈ Fdq that

−cP (x) + x · c =
d∑
i=1

(−cfi(xi) + cixi),

and thus ∑
x∈Fd

q

χ1(−cP (x) + x · c) =
d∏
i=1

{∑
xi∈Fq

χ1(−cfi(xi) + cixi)

}
. (24)

By the definition of fi, the function gi(Xi) := −cfi(Xi) + ciXi is also a non-linear planar
function over F+

q for every 1 ≤ i ≤ d. In fact, since c ∈ F∗q, gi(Xi + a) − gi(Xi) =
−c{fi(Xi +a)− fi(Xi)}+ cia is a permutation of Fq for each a ∈ F∗q. Thus it follows from
(24) and Lemma 17 that∣∣∣∑

x∈Fd
q

χ1(−cP (x) + x · c)
∣∣∣ = (

√
q)d =

√
qd. (25)

Remark 19. When d = 1, the (q2 + q, q)-codebook CP in Theorem 18 exactly meets the
Levenshtein bound. We remark that this codebook was obtained by Ding-Yin [9]. In
particular, it is known that P (X) = X2 is a non-linear planar function over F+

q and the
codebook CP in this case is exactly one constructed by Wootters-Fields [38].
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Remark 20. Known examples of non-linear planar functions over F+
q are expressed by a

monomial of higher degree; see e.g. [9, 29] and references therein. We remark that by
Theorem 18 and Corollary 15, one can extend Corollary 4.2 in Koh-Shen [20]. Let d ≥ 2
be an arbitrarily fixed integer and q a sufficiently large prime power. Corollary 4.2 in
Koh-Shen [20] states that if P (X1, . . . , Xd) =

∑d
i=1 piX

kj
i with pi ∈ F∗q and ki ≥ 2 is a

fixed integer with (ki, q) = 1 for every 1 ≤ i ≤ d, then it holds when |E||F| = Ω(qd+1) that
|∆P (E ,F)| = Θ(q). This was obtained as a corollary of Theorem 5, where the condition
(∗) was confirmed by the Weil’s theorem (see e.g. Theorem 5.38 in [23]). However, for the
case that some ki is an unbounded function of q, the Weil’s theorem does not necessarily
imply the condition (∗) in general.

Now suppose that q = pt where p is an odd prime and fixed t ≥ 1, and thus q →∞ if
and only if p → ∞. It was proved in [7] that Xpk+1 is a non-linear planar function over
F+
q if k ≥ 1 is an integer such that t/(t, k) is odd. For the simplicity, we consider the

case that k = 1 and t > k is odd, which directly implies that t/(t, k) = t is odd; however
the discussion below also works for general cases as well. Suppose that P (X1, . . . , Xd) =∑d

i=1 piX
p+1
i =

∑d
i=1 piX

q(1/t)+1
i with pi ∈ F∗q for 1 ≤ i ≤ d. Notice that (p + 1, q) = 1.

Then the Weil’s theorem implies that for c ∈ F∗q and c ∈ Fdq ,∣∣∣∣∑
x∈Fd

q

χ1(−cP (x) + x · c)

∣∣∣∣ =
d∏
i=1

∣∣∣∣∑
xi∈Fq

χ1(−cpixq
(1/t)+1
i + cixi)

∣∣∣∣ ≤ q(
1
2
+ 1

t
)d,

which is much weaker than the condition (∗). On the other hand, Theorem 18 and
Lemma 17 directly imply the condition (∗), and thus the statement in Corollary 4.2 in
Koh-Shen [20] holds for the polynomial P defined above. By Theorem 18, one can also
extend to the case of more general polynomials satisfying the conditions in Theorem 18
from other known non-linear planar functions over F+

q .

5 Concluding remarks

First, Section 4 gives some polynomials P such that the codebook CP is asymptotically
optimal. However, these are for the case that q is odd. For the case that q is even, as in
Ding-Yin [9], one can use polynomials of the form of P (X1, . . . , Xd) =

∑d
i=1 fi(Xi) where

each fi is an almost bent function. Then for each d ≥ 2, Imax(CP ) has the optimal order of
the magnitude. Also, if d = 1, it meets the Levenshtein bound as proved by Ding-Yin [9].
The details of these results will be shown in the full paper of this extended abstract.

Next, in Section 4, asymptotically optimal (qd+1+qd, qd)-codebooks CP are constructed
for each d ≥ 1 and some polynomials P ∈ Fq[X1, . . . , Xd]. These are based on the abelian
group Fq × Fdq and polynomials P , and thus, for each d and prime power q, to generate
examples of codebooks, it would be enough to apply the operations of Fq to get the set DP

defining the codebook CP . On the other hand, as constructed in [38, 9], there exist optimal
(q2d + qd, qd)-codebooks, which have more vectors (see Remark 19). The constructions in
[38, 9] are based on the abelian group Fqd ×Fqd and non-linear planar functions over F+

qd
.

Note that in these constructions, to generate examples of codebooks for each d and q, one
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might need to construct the extended field Fqd of Fq of degree d, and then might apply
multiplications of elements in not only Fq but also Fqd . To our best knowledge, these
seem to take certain computational costs for each q if d is large (e.g. [28, Chapter 11]).
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2011.

[15] S. W. Golomb, G. Gong. Signal Design for Good Correlation: For Wireless Commu-
nication, Cryptography and Radar. Cambridge Univ. Press, 2005.

[16] Z. Heng, C. Ding, Q. Yue. New constructions of asymptotically optimal codebooks
with multiplicative characters. IEEE Trans. Inf. Theory, 64(10): 6498–6505, 2017.

[17] H. Hu, J. Wu. New constructions of codebooks nearly meeting the Welch bound with
equality. IEEE Trans. Inf. Theory, 60(2): 1348–1355, 2014.
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