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Abstract

Minimal linear codes have received much attention in the past decades due to
their important applications in secret sharing and secure two-party computation,
etc. Recently, several classes of minimal linear codes with wmin/wmax ≤ (p − 1)/p
have been discovered, where wmin and wmax respectively denote the minimum and
maximum nonzero weights in a code. In this paper, we investigate the minimality
of a class of p-ary linear codes and obtain some sufficient conditions for this kind of
linear codes to be minimal, which is a generalization of the recent results given by
Xu et al. in (Finite Fields and Their Applications, vol. 65, 2020). This allows us to
construct two new families of minimal linear codes with wmin/wmax ≤ (p−1)/p from
weakly regular bent functions. The parameters of minimal linear codes presented
in this paper are different from those known in literature.

1 Introduction

Throughout this paper, let p be an odd prime and m a positive integer. Let Fq denote
the finite field with q elements, where q = pm. An [n, k, d] linear code C over Fp is a k-
dimensional subspace of Fnp with minimum Hamming distance d. The weight enumerator
of C of length n is the polynomial 1 +A1z+A2z

2 + · · ·+Anz
n, where Ai is the number of
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codewords of weight i in C. We generally denote the weight distribution of a linear code
C by the sequence (1, A1, A2, · · · , An).

The support of a codeword c = (c1, c2, · · · , cn) ∈ C is the set of coordinates with a
non-zero entry, i.e., Suppt(c) = {i ∈ {1, 2, · · · , n} : ci 6= 0}. Clearly, the Hamming weight
wt(c) of a codeword equals |Suppt(c)|. If Suppt(c′) ⊆ Suppt(c), we call c covers c′ and
write c′ � c. A codeword c is called minimal if it only covers the codewords ac for
all a ∈ Fp. Equivalently, the support of wt(c) does not contain the support of another
linearly independent codeword. A linear code C is said to be minimal if every nonzero
codeword of C is minimal.

Minimal linear codes play an important role in defining access structures in secret
sharing schemes based on linear codes [6, 16]. In addition, they are used to ensure privacy
in a protocol for secure two-party computation [4]. Ashikhmin and Barg [1] proved a useful
criterion for a linear code to be minimal.

Theorem 1. [1](Ashikhmin–Barg). A linear code C over Fp is minimal if wmin/wmax >
(p− 1)/p.

Inspired by the works of [7, 8], several different families of optimal and minimal few-
weight linear codes have been constructed in [11, 15, 23, 25, 26, 29, 31] by selecting a
proper defining set D. In recent years, the notion of trace codes has been extended from
finite fields to finite rings and more minimal linear codes with wmin/wmax > (p − 1)/p
have been constructed in [20, 21, 22]. It should be noted that the condition in Theorem
1 is not necessary. Finding minimal linear codes with wmin/wmax ≤ (p− 1)/p has been an
interesting research topic since Chang and Hyun [5] constructed the first infinite family of
minimal binary codes with wmin/wmax ≤ 1/2. Ding, Heng and Zhou [9, 12] derived a new
necessary and sufficient condition for a linear code to be minimal and obtained several
classes of minimal linear codes with wmin/wmax ≤ (p− 1)/p. After that, several minimal
linear codes with wmin/wmax ≤ (p− 1)/p were constructed in [2, 14, 19, 27, 30]. In [3, 24],
the authors studied the relationship between minimal linear codes and cutting blocking
sets and gave some constructions of minimal linear codes not satisfying the Aschikhmin-
Barg’s condition.

Let U be a subset of Fsp, and let g(x, y) = φ(x) · y, where · denotes the standard inner
product, x ∈ Fsp, y ∈ Ftp, φ(x) is an injection from U to Ftp \ {0} and φ(x) = 0 for any
x ∈ Fsp \ U . Recently, Xu, Qu and Cao [28] studied the minimality of the following linear
codes

CU = {cα,β1,β2 = (αg(x, y)− β1 · x− β2 · y)(x,y)∈Fsp×Ftp\{(0,0)} : α ∈ Fp, β1 ∈ Fsp, β2 ∈ Ftp}.
(1)

By selecting the suitable subset U of Fsp, they obtained two classes of minimal linear
codes with wmin/wmax < (p − 1)/p. Following the work of [28], this paper further study
the construction of minimal linear codes not satisfying the Aschikhmin-Barg’s condition.
First, we give some sufficient conditions for linear codes in (1) to be minimal and determine
their weight distributions. As applications, we present new minimal linear codes with
wmin/wmax < (p− 1)/p from the subset of the preimage of weakly regular bent functions.
The determination of the weight distributions of these linear codes are based on the
technique in [23] to study the subset of the preimage of weakly regular bent functions.
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2 Preliminaries

In this section, we recall the basic notation and some results of weakly regular bent
functions.

2.1 Weakly regular bent functions

Let Trm1 (x) =
∑m−1

i=0 xp
i

be the trace function from Fq to Fp, where q = pm. The Walsh
transform of a p-ary function f(x) : Fq → Fp is defined as

f̂(λ) =
∑
x∈Fq

ζf(x)−Tr
m
1 (λx)

p , λ ∈ Fq,

where ζp = e
2π
√
−1
p is a primitive p-th root of unity.

The inverse Walsh transform of a p-ary function f is given by

ζf(x)p = p−m
∑
λ∈Fq

f̂(λ)ζTr
m
1 (λx)

p .

A p-ary function f from Fq to Fp is bent if |f̂(λ)| = pm/2 for any λ ∈ Fpm . A p-ary

bent function f(x) is called regular if for each λ ∈ Fpm , f̂(λ) = pm/2ζ
f∗(λ)
p for some p-ary

function f ∗ from Fpm to Fp. A p-ary bent function f(x) is called weakly regular if there

is a complex u with unit magnitude such that f̂(λ) = upm/2ωf
∗(λ). The function f ∗(x) is

called the dual of f(x). It was shown in [10] that the Walsh transform of a weakly regular
bent function satisfies

f̂(λ) = ε
√
p∗
m
ζf
∗(λ)

p , (2)

where ε = ±1 is called the sign of the Walsh transform of f(x) and p∗ =
(
−1
p

)
p =

(−1)
p−1
2 p. It is well known that the dual of a weakly regular bent function is also weakly

regular bent. All known weakly regular bent functions over Fpm with odd characteristic
p can be found in [23, Table XI].

Let f(x) ∈ Rm be the set of weakly regular bent functions in m variables such that
f(0) = 0 and f(ax) = alf(x) for any a ∈ F∗p and x ∈ Fq with gcd(l − 1, p− 1) = 1. From
[23], the dual f ∗(x) of the weakly bent function f(x) in Rm also belongs to Rm.

We need the following exponential sums, which are well known.

Lemma 2. [13] Let η0 be the quadratic character of F∗p. Then (i)
∑

a∈F∗p
η0(a) = 0; (ii)∑

a∈F∗p
η0(a)ζap =

√
p∗; (iii)

∑
a∈Fp ζ

ba2

p = η0(b)
√
p∗, for any b ∈ F∗p.

Some well known results on the Galois group of the cyclotomic field Q(ζp) are used
in our proofs, where Q denotes the rational field. The Galois group of Q(ζp) over Q is
{σa : a ∈ GF(p)∗}, where the automorphism σa of Q(ζp) is defined by σa(ζp) = ζap . It
is clear that σa(ζ

b
p) = ζabp for any a ∈ F∗p and b ∈ Fp. The cyclotomic filed Q(ζp) has a

unique quadratic subfield Q(
√
p∗).
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By Lemma 2 (ii), we have
√
p∗ =

∑
b∈F∗p

η0(b)ζ
b
p, which implies that

σa(
√
p∗) =

∑
b∈F∗p

η0(b)ζ
ab
p = η0(a)

∑
b∈F∗p

η0(ab)ζ
ab
p = η0(a)

√
p∗. (3)

2.2 A general construction of linear codes from functions

Let g(x) be a p-ary function such that g(0) = 0 and g(x) 6= w · x for any w ∈ Fkp. A
general construction of linear codes from g is given by

Cg = {cα,λ = (αg(x)− λ · x)x∈Fkp\{0} : α ∈ Fp, λ ∈ Fkp}. (4)

It is well known that this construction can provide many interesting linear codes [3, 9, 12,
17, 18, 27]. With the automorphism of the cyclotomic field Q(ζp), the Hamming weights
of the codewords of Cg can be computed as follows.

Lemma 3. [17] Let Cg be the linear code defined by (4). Then Cg is a [pk − 1, k+ 1] code
and the Hamming weight of cα,λ is given by

wt(cα,λ) =


0, if α = 0, λ = 0;
pk − pk−1, if α = 0, λ 6= 0;
pk − pk−1 − 1

p

∑
ω∈F∗p

σω(σα(χ̂g(α
−1λ))), if α ∈ F∗p, λ ∈ Fkp.

2.3 Exponential sums related to weakly regular bent functions

We now give some exponential sums related to weakly regular bent functions, which play
a key role in constructing minimal linear codes with wmin/wmax < (p − 1)/p. We denote
SQ and NSQ by the set of all squares and nonsquares in F∗p, respectively.

Lemma 4. [23] Let f(x) ∈ Rm with f̂(0) = ε
√
p∗
m

, and f ∗(x) be the dual of f(x), where
ε = ±1. For i ∈ Fp, define

Df,i = {x ∈ Fq : f(x) = i} and Df∗,i = {x ∈ Fq : f ∗(x) = i}.

(i) If m is even, then

|Df,i| = |Df∗,i| =

{
pm−1 + ε(p− 1)η

m/2
0 (−1)p(m−2)/2, i = 0;

pm−1 − εηm/20 (−1)p(m−2)/2, i ∈ F∗p.

(ii) If m is odd, then

|Df,i| =


pm−1, i = 0;

pm−1 + ε
√
p∗
m−1

, i ∈SQ;

pm−1 − ε
√
p∗
m−1

, i ∈NSQ.
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|Df∗,i| =


pm−1, i = 0;

pm−1 + εη0(−1)
√
p∗
m−1

, i ∈SQ;

pm−1 − εη0(−1)
√
p∗
m−1

, i ∈NSQ.

In what follows, a series of auxiliary results are described, which are used to prove the
minimality of linear codes presented in Section 3. For λ ∈ F∗q and j ∈ Fp, we define

Df,λ,j = {x ∈ Fq : f(x) = 0 and Trm1 (λx) = j}.

Lemma 5. Let λ ∈ F∗q, j ∈ F∗p and f(x) ∈ Rm with f̂(0) = ε
√
p∗
m

.
(i) If m is even, then∑

z∈F∗p

∑
y∈F∗p

∑
x∈Fq

ζyf(x)−z(Tr
m
1 (λx)−j)

p =

{
−ε(p− 1)

√
p∗
m
, f ∗(λ) = 0;

ε
√
p∗
m
, f ∗(λ) 6= 0;

(ii) If m is odd, then

∑
z∈F∗p

∑
y∈F∗p

∑
x∈Fq

ζyf(x)−z(Tr
m
1 (λx)−j)

p =


0, f ∗(λ) = 0;
−ε(−1)(p−1)(m+1)/4p(m+1)/2, f ∗(λ) ∈ SQ;
ε(−1)(p−1)(m+1)/4p(m+1)/2, f ∗(λ) ∈ NSQ.

Proof. The proof is similar to that of Lemma 10 in [23] and is omitted.

From Lemma 5, and Lemmas 9 and 11 in [23], we have the following results.

Lemma 6. For λ ∈ F∗q and f(x) ∈ Rm with f̂(0) = ε
√
p∗
m

.
(i) If m is even, then

|Df,λ,0| =
{
pm−2 + ε(p− 1)η

m/2
0 (−1)p(m−2)/2, f ∗(λ) = 0;

pm−2, f ∗(λ) 6= 0;

and

|Df,λ,j| =
{
pm−2, f ∗(λ) = 0;

pm−2 + εη
m/2
0 (−1)p(m−2)/2, f ∗(λ) 6= 0;

for j ∈ F∗p.
(ii) If m is odd, then

|Df,λ,0| =


pm−2, f ∗(λ) = 0;
pm−2 + ε(p− 1)(−1)(p−1)(m+1)/4p(m−3)/2, f ∗(λ) ∈ SQ;
pm−2 − ε(p− 1)(−1)(p−1)(m+1)/4p(m−3)/2, f ∗(λ) ∈ NSQ;

and

|Df,λ,j| =


pm−2, f ∗(λ) = 0;
pm−2 − ε(−1)(p−1)(m+1)/4p(m−3)/2, f ∗(λ) ∈ SQ;
pm−2 + ε(−1)(p−1)(m+1)/4p(m−3)/2, f ∗(λ) ∈ NSQ;

for j ∈ F∗p.
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Remark 7. Evaluating the complete weight enumerator of a given linear code is not an
easy task in general. Notice that Lemma 6 can be used to determine the complete weight
enumerators of some linear codes presented in [23].

For a subset D of Fq, the character sum χλ(D) of D with respect to λ ∈ F∗q is defined

by χλ(D) =
∑

x∈D ζ
Trm1 (λx)
p .

Lemma 8. Let λ ∈ F∗q and f(x) ∈ Rm with f̂(0) = ε
√
p∗
m

. Let Df,0 = {x ∈ Fq : f(x) =
0}.

(i) If m is even, then

χλ(Df,0) =

{
εη

m/2
0 (−1)(p− 1)p(m−2)/2, f ∗(λ) = 0;

−εηm/20 (−1)p(m−2)/2, f ∗(λ) 6= 0.

(ii) If m is odd, then

χλ(Df,0) =


0, f ∗(λ) = 0;
ε(−1)(p−1)(m+1)/4p(m−1)/2, f ∗(λ) ∈ SQ;
−ε(−1)(p−1)(m+1)/4p(m−1)/2, f ∗(λ) ∈ NSQ.

Proof. By the definition of χλ(Df,0), we have

χλ(Df,0) =
∑
x∈D

ζTr
m
1 (λx)

p =

p−1∑
j=0

|Df,λ,j|ζjp .

The assertion then follows from the fact that
∑p−1

j=0 ζ
j
p = 0 and Lemma 6.

3 Minimal linear codes violating the Ashikhmin-Barg’s condi-
tion from weakly regular bent functions

In this section, we present two families of p-ary minimal linear codes violating the Ashikhmin-
Barg’s condition with a generalization of our construction in [28, Theorem 3.1]. We begin
with a lemma about the Walsh transform of a function g(x, y) defined over Fsp × Ftp.

Lemma 9. Let U be a subset of Fsp. For (x, y) ∈ Fsp× Ftp, define g(x, y) = φ(x) · y, where
φ(x) is a mapping from Fsp to Ftp such that φ(x) is an injection from U to Ftp \ {0} and
φ(x) = 0 for any x ∈ Fsp \ U . For any (λ1, λ2) ∈ Fsp × Ftp,

ĝ(λ1, λ2) =


pt

∑
x∈Fsp\U

ζ−λ1·xp , if λ2 = 0;

ptζ
−λ1·φ−1(λ2)
p , if λ2 ∈ Imφ \ {0};

0, if λ2 /∈ Imφ,

where Imφ denotes the image of φ(x).

Sequences and Their Applications (SETA) 2020 6



Minimal linear codes from weakly regular bent functions

Proof. By the definition of Walsh transform, we have

ĝ(λ1, λ2) =
∑
x∈Fsp

∑
y∈Ftp

ζφ(x)·y−λ1·x−λ2·yp =
∑
x∈Fsp

ζ−λ1·xp

∑
y∈Ftp

ζ(φ(x)−λ2)·yp

=

{
pt

∑
x∈φ−1(λ2)

ζ−λ1·xp , if λ2 ∈ Imφ;

0, if λ2 /∈ Imφ.

The desired results follow from the assumption that φ(x) is an injection from U to Ftp\{0}
and φ(x) = 0 for any x ∈ Fsp \ U .

Now we are going to give a further characterization of the minimality linear code
defined in (1).

Theorem 10. Let k = s+ t be a positive integer, where s and t are two positive integers.
Let U be a subset of Fsp with 0 ∈ U . Let g(x, y) = φ(x) · y, where φ(x) is a mapping
from Fsp to Ftp such that φ(x) is an injection from U to Ftp \ {0} and φ(x) = 0 for any
x ∈ Fsp \ U . If the set U satisfies the following three conditions:

(i) p− 1 < |U | < (p− 1)ps−1,

(ii) |{x ∈ U | λ1 · x 6= 0}| ≥ 2 for any λ1 ∈ Fsp \ {0},
(iii) maxλ1∈Fsp\{0} |{x ∈ U | λ1 · x = i}| < (p− 1)ps−2 for any i ∈ Fp,

then the code CU defined in (1) is a minimal linear code with wmin/wmax < (p − 1)/p.
Moreover, the Hamming weights of the codewords of CU are given in Table 1.

Table 1: The Hamming weights of CU in Theorem 10
Weight w No.of codewords Aw

0 1
pt−1(p− 1)|U | p− 1

pk − pk−1 − pt−1
∑

ω∈F∗p
σω(

∑
x∈Fsp\U

ζ−λ1·xp ), λ1 ∈ Fsp\{0} (ps − 1)(p− 1))

pk − pk−1 − pt−1(p− 1) (p− 1)(|U |+ p− 1)ps−1

pk − pk−1 pk − 1 + ps(pt − |U | − 1)(p− 1)
pk − pk−1 + pt−1 (p− 1)(|U | − 1)(ps − ps−1)

Proof. The minimality of CU is proved by using the similar argument given in the proof
of [28, Lemma 3.1 and Theorem 3.1 ].

We now compute the Hamming weights of the codewords of CU . Clearly, when α = 0
and (λ1, λ2) 6= (0,0), we have wt(c0,β1,β2) = pk − pk−1 from Lemma 3.

Below we consider the case of α 6= 0. By Lemma 3 again,

wt(cα,λ1,λ2) = pk − pk−1 − 1

p

∑
ω∈F∗p

σω(σα(ĝ(α−1λ1, α
−1λ2))). (5)
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Case 1: Let α 6= 0 and (λ1, λ2) = (0,0). It is clear that (α−1λ1, α
−1λ2) = (0,0). It

follows from Lemma 9 and (5) that

wt(cα,0,0) = pk − pk−1 − (p− 1)pt−1(ps − |U |) = pt−1(p− 1)|U |.

Case 2: Let α 6= 0, λ1 6= 0 and λ2 = 0. It is clear that α−1λ1 6= 0 and α−1λ2 = 0. It
follows from Lemma 9 and (5) that

wt(cα,λ1,0) = pk − pk−1 − pt−1
∑
ω∈F∗p

σω(
∑

x∈Fsp\U

ζ−λ1·xp ).

Case 3: Let α 6= 0 and α−1λ2 ∈ Imφ \ {0}. By Lemma 9 and (5), we have

wt(cα,λ1,λ2) = pk − pk−1 − 1

p

∑
ω∈F∗p

σω(σα(ĝ(α−1λ1, α
−1λ2)))

= pk − pk−1 − pt−1
∑
ω∈F∗p

ζ−ωλ1·φ
−1(α−1λ2)

p .

Note that φ(x) is a mapping from Fsp to Ftp such that φ(x) is an injection from U to
Ftp \ {0}.

Subcase 3.1: Let φ−1(α−1λ2) = 0. Then wt(cα,λ1,λ2) = pk − pk−1 − pt−1(p− 1) for any
λ1 ∈ Fsp.

Subcase 3.2: Let φ−1(α−1λ2) 6= 0. For a fixed φ−1(α−1λ2) ∈ Fsp \ {0}, there exist ps−1

elements λ1 ∈ Fsp such that λ1 ·φ−1(α−1λ2) = 0 and (p−1)ps−1 elements λ1 ∈ Fsp such that
λ1 · φ−1(α−1λ2) 6= 0. If λ1 · φ−1(α−1λ2) = 0, then wt(cα,λ1,λ2) = pk − pk−1 − pt−1(p − 1).
If λ1 · φ−1(α−1λ2) 6= 0, then wt(cα,λ1,λ2) = pk − pk−1 + pt−1.

Case 4: Let α 6= 0 and α−1λ2 /∈ Imφ. It follows from Lemma 9 that ĝ(α−1λ1, α
−1λ2) =

0, which implies that wt(cα,λ1,λ2) = pk − pk−1.
Let w1 = pt−1(p− 1)|U | and w2 = pk − pk−1. It is easily verified that

wmin

wmax

≤ w1

w2

=
|U |
ps

<
p− 1

p

since |U | < (p− 1)ps−1.

Remark 11. When |U | < (p−1)ps−2, it is easy to see that the condition maxλ1∈Fsp\{0} |{x ∈
U | λ1 · x = i}| < (p− 1)ps−2 always holds for any i ∈ Fp. Hence, the sufficient conditions
for CU to be minimal in Theorem 10 generalizes the results of [28, Theorem 3.1]. What’s
more, with the increase of the cardinality of the set U , it is helpful to improve the minimum
distance of CU defined by (1).

Remark 12. From Table 1, the parameters of CU are closely related to the property of the
set U . It is important to find a subset of Fsp suitable for constructing of minimal linear
codes in Theorem 10.

In what follows, we will use Theorem 10 to construct new minimal linear codes with
wmin/wmax < (p− 1)/p from weakly regular bent functions.

Sequences and Their Applications (SETA) 2020 8
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Let U = Df,0 = {x ∈ Fq : f(x) = 0}, where f(x) ∈ Rm with f̂(0) = ε
√
p∗
m

. We
consider p-ary function g(x, y) defined over Fpm × Fpm by g(x, y) = Trm1 (φ(x)y), where
(x, y) ∈ Fpm×Fpm , φ(x) is a mapping from Fpm to Fpm such that φ(x) is an injection from
U to F∗pm and φ(x) = 0 for any x ∈ Fpm \ U . Define a linear code by

CU = {cα,λ1,λ2 = (αg(x, y)− Trm1 (λ1x)− Trm1 (λ2y))(x,y)∈Fpm×Fpm\{(0,0)} :

α ∈ Fp, λ1 ∈ Fpm , λ2 ∈ Fpm}. (6)

Theorem 13. Let m be an even positive integer with m ≥ 4, and let f(x) ∈ Rm with

f̂(0) = ε
√
p∗
m

. Define U = Df,0 = {x ∈ Fq : f(x) = 0}. Then CU defined by (6) is a
[p2m−1, 2m+1] minimal linear code with wmin/wmax < (p−1)/p and its weight distribution

is listed in Table 2, where A = εη
m/2
0 (−1)p(m−2)/2.

Table 2: The weight distribution of CU in Theorem 13
Weight w No.of codewords Aw

0 1
pm−1(p− 1)(pm−1 + (p− 1)A) p− 1
p2m − p2m−1 + (p− 1)2pm−1A (p− 1)(pm−1 + (p− 1)A− 1)
p2m − p2m−1 − (p− 1)pm−1A (p− 1)2(pm−1 − A)
p2m − p2m−1 − pm−1(p− 1) (p− 1)pm−1(pm−1 + (p− 1)A+ p− 1)

p2m − p2m−1 p2m − 1 + pm(pm − pm−1 − (p− 1)A− 1)(p− 1)
p2m − p2m−1 + pm−1 (p− 1)(pm−1 + (p− 1)A− 1)(pm − pm−1)

Proof. To investigate the minimality of CU , it is sufficient to show that the set U satisfies
three conditions of Theorem 10. It follows from Lemmas 4 and 6 that the set U satisfies
Conditions (i), (ii) and (iii) of Theorem 10.

Note that
∑

x∈Fpm ζ
Trm1 (−λ1x)
p = 0 for any λ1 ∈ F∗pm . Since f(x) ∈ Rm, f ∗(−λ1) =

f ∗(λ1) for any λ1 ∈ F∗pm . From Lemma 8 (i), we have

∑
x∈Fpm\U

ζ−Tr
m
1 (λ1x)

p = −χλ(Df,0) =

{
−εηm/20 (−1)(p− 1)p(m−2)/2, f ∗(λ) = 0;

εη
m/2
0 (−1)p(m−2)/2, f ∗(λ) 6= 0.

By Table 1, for α 6= 0, λ1 ∈ F∗pm and λ2 = 0,

wt(cα,λ1,0) = p2m − p2m−1 − pm−1
∑
ω∈F∗p

σω(
∑

x∈Fpm\U

ζ−λ1·xp )

=

{
p2m − p2m−1 + (p− 1)2pm−1εη

m/2
0 (−1)p(m−2)/2, f ∗(λ) = 0;

p2m − p2m−1 − (p− 1)pm−1εη
m/2
0 (−1)p(m−2)/2, f ∗(λ) 6= 0.

By Lemma 4 (i), the number of codewords cα,λ1,λ2 with the Hamming weight p2m −
p2m−1+(p−1)2pm−1εη

m/2
0 (−1)p(m−2)/2 (resp. p2m−p2m−1−(p−1)pm−1εη

m/2
0 (−1)p(m−2)/2) is

equal to (p−1)(pm−1+(p−1)εη
m/2
0 (−1)p(m−2)/2−1) (resp. (p−1)2(pm−1−εηm/20 (−1)p(m−2)/2)).

Then the desired results follow from Theorem 10.
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Example 14. Let p = 3, m = 4 and f(x) = Tr41(ξx
2), where ξ is a generator of F∗34 .

The sign ε of the Walsh transform of f(x) is equal to 1. Then CU is a minimal ternary
code with parameters [6560,9,1782] and its weight enumerator is 1 + 2z1782 + 96z4212 +
1890z4320 + 14174z4374 + 3456z4401 + 64z4698, which is verified by Magma. It is clear that
wmin/wmax = 1782/4698 < 2/3.

Example 15. Let p = 3, m = 4 and f(x) = Tr41(x
34 + x2). The sign ε of the Walsh

transform of f(x) is equal to −1. Then CU is a minimal ternary code with parameters
[6560,9,1134] and its weight enumerator is 1 + 2z1134 + 40z4050 + 1242z4320 + 16118z4374 +
2160z4401+120z4536, which is verified by Magma. It is clear that wmin/wmax = 1134/4536 <
2/3.

Theorem 16. Let m be an odd positive integer with m ≥ 3, and let f(x) ∈ Rm with

f̂(0) = ε
√
p∗
m

. Define U = Df,0 = {x ∈ Fq : f(x) = 0}. Then CU defined by (6) is a
[p2m−1, 2m+1] minimal linear code with wmin/wmax < (p−1)/p and its weight distribution

is listed in Table 3, where B = εη
(m+1)/2
0 (−1)p(m−1)/2.

Table 3: The weight distribution of CU in Theorem 16
Weight w No.of codewords Aw

0 1
p2m−2(p− 1) p− 1

p2m − p2m−1 + (p− 1)pm−1B (p−1)2
2

(pm−1 +B)

p2m − p2m−1 − (p− 1)pm−1B (p−1)2
2

(pm−1 −B)
p2m − p2m−1 − pm−1(p− 1) (p− 1)pm−1(pm−1 + p− 1)

p2m − p2m−1 p2m − 1 + (p− 1)(pm−1 − 1 + pm(pm − pm−1 − 1))
p2m − p2m−1 + pm−1 (p− 1)(pm−1 − 1)(pm − pm−1)

Proof. From Lemma 8 (ii) and Lemma 4 (ii), the proof is similar to that of Theorem 13
and we omit it here.

Example 17. Let p = 3, m = 3 and f(x) = Tr31(ξx
4), where ξ is a generator of F∗33 . The

sign ε of the Walsh transform of f(x) is equal to −1. Then CU is a minimal ternary code
with parameters [728,7,162] and its weight enumerator is 1 + 2z162 + 12z432 + 198z468 +
1662z486 + 288z495 + 24z540, which is verified by Magma. It is clear that wmin/wmax =
162/540 < 2/3.

Example 18. Let p = 5, m = 3 and f(x) = Tr31(x
2). The sign ε of the Walsh transform

of f(x) is equal to 1. Then CU is a minimal code with parameters [15624,7,2500] and its
weight enumerator is 1+4z2500+160z12000+2900z12400+65220z12500+9600z12525+240z13000,
which is verified by Magma. It is clear that wmin/wmax = 2500/13000 < 4/5.

Remark 19. It should be noted that the weight distributions of minimal linear codes with
wmin/wmax < (p−1)/p presented in this paper are new by comparing with known minimal
linear codes with wmin/wmax < (p− 1)/p in the literatures [2, 3, 5, 9, 12, 19, 27, 28].
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