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Abstract

Minimal linear codes have received much attention in the past decades due to
their important applications in secret sharing and secure two-party computation,
etc. Recently, several classes of minimal linear codes with wyin/wWmax < (p —1)/p
have been discovered, where wy,j, and wpyax respectively denote the minimum and
maximum nonzero weights in a code. In this paper, we investigate the minimality
of a class of p-ary linear codes and obtain some sufficient conditions for this kind of
linear codes to be minimal, which is a generalization of the recent results given by
Xu et al. in (Finite Fields and Their Applications, vol. 65, 2020). This allows us to
construct two new families of minimal linear codes with wyin/Wmax < (p—1)/p from

weakly regular bent functions. The parameters of minimal linear codes presented
in this paper are different from those known in literature.

1 Introduction

Throughout this paper, let p be an odd prime and m a positive integer. Let I, denote
the finite field with ¢ elements, where ¢ = p™. An [n, k, d] linear code C over F, is a k-
dimensional subspace of F} with minimum Hamming distance d. The weight enumerator
of C of length n is the polynomial 1+ A,z 4+ Ay2? +---+ A, 2", where A; is the number of
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codewords of weight ¢ in C. We generally denote the weight distribution of a linear code
C by the sequence (1, Ay, A, -+, Ap).

The support of a codeword ¢ = (¢1,¢9,+ ,¢,) € C is the set of coordinates with a
non-zero entry, i.e., Suppt(c) = {i € {1,2,--- ,n} : ¢; # 0}. Clearly, the Hamming weight
wt(c) of a codeword equals |[Suppt(c)|. If Suppt(c’) C Suppt(c), we call ¢ covers ¢’ and
write ¢/ < ¢. A codeword c is called minimal if it only covers the codewords ac for
all a € F,. Equivalently, the support of wt(c) does not contain the support of another
linearly independent codeword. A linear code C is said to be minimal if every nonzero
codeword of C is minimal.

Minimal linear codes play an important role in defining access structures in secret
sharing schemes based on linear codes [6, 16]. In addition, they are used to ensure privacy
in a protocol for secure two-party computation [4]. Ashikhmin and Barg [1] proved a useful
criterion for a linear code to be minimal.

Theorem 1. [1/(Ashikhmin-Barg). A linear code C over F,, is minimal if Wmin/Wmax >
(- 1)/p.

Inspired by the works of [7, 8], several different families of optimal and minimal few-
weight linear codes have been constructed in [11, 15, 23, 25, 26, 29, 31] by selecting a
proper defining set D. In recent years, the notion of trace codes has been extended from
finite fields to finite rings and more minimal linear codes with wpi, /Wmax > (p — 1)/p
have been constructed in [20, 21, 22]. It should be noted that the condition in Theorem
1 is not necessary. Finding minimal linear codes with wyin/Wmax < (p —1)/p has been an
interesting research topic since Chang and Hyun [5] constructed the first infinite family of
minimal binary codes with Wy, /Wmax < 1/2. Ding, Heng and Zhou [9, 12] derived a new
necessary and sufficient condition for a linear code to be minimal and obtained several
classes of minimal linear codes with Wi /Wmax < (p — 1)/p. After that, several minimal
linear codes with Wyin/Wmax < (p —1)/p were constructed in [2, 14, 19, 27, 30]. In [3, 24],
the authors studied the relationship between minimal linear codes and cutting blocking
sets and gave some constructions of minimal linear codes not satisfying the Aschikhmin-
Barg’s condition.

Let U be a subset of IF;, and let g(z,y) = é(z) - y, where - denotes the standard inner
product, x € F5, y € F}, ¢(x) is an injection from U to F} \ {0} and ¢(x) = 0 for any
x € F; \ U. Recently, Xu, Qu and Cao [28] studied the minimality of the following linear
codes

Cu = {cap s = (@g(z,y) = b1 & — B2 Y)@@y)ersxri\{(00)) : @ € Fp, 51 €F}, Ba € F'}.
(1)
By selecting the suitable subset U of [F;, they obtained two classes of minimal linear
codes with Wpin/Wmax < (p — 1)/p. Following the work of [28], this paper further study
the construction of minimal linear codes not satisfying the Aschikhmin-Barg’s condition.
First, we give some sufficient conditions for linear codes in (1) to be minimal and determine
their weight distributions. As applications, we present new minimal linear codes with
Winin/Wimax < (p — 1)/p from the subset of the preimage of weakly regular bent functions.
The determination of the weight distributions of these linear codes are based on the

technique in [23] to study the subset of the preimage of weakly regular bent functions.
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2 Preliminaries

In this section, we recall the basic notation and some results of weakly regular bent
functions.

2.1 Weakly regular bent functions

Let Tr"(z) = 37! 2% be the trace function from F, to F,, where ¢ = p™. The Walsh
transform of a p-ary function f(x): F, — F, is defined as

o) = Z J@-TTON )\ e T,
z€ely
where (, =e » is a primitive p-th root of unity.
The inverse Walsh transform of a p-ary function f is given by

G =p Y FGEO.

A€F,

A p-ary function f from F, to F, is bent if |f()x)] = p™? for any A € Fym. A p-ary
bent function f(z) is called regular if for each A € Fym, f()\) = pm/2¢] "™ for some p-ary
function f* from F,m to F,. A p-ary bent function f(x) is called weakly regular if there
is a complex v with unit magnitude such that fA()\) = up™ 2w N, The function f*(z) is
called the dual of f(z). It was shown in [10] that the Walsh transform of a weakly regular
bent function satisfies

FO) = v, (2)

where ¢ = £1 is called the sign of the Walsh transform of f(z) and p* = (%) p =

(—1)172;1 p. It is well known that the dual of a weakly regular bent function is also weakly
regular bent. All known weakly regular bent functions over F,» with odd characteristic
p can be found in [23, Table XIJ.

Let f(x) € R,, be the set of weakly regular bent functions in m variables such that
f(0) =0 and f(ax) = d'f(z) for any a € F} and = € F, with ged(l —1,p — 1) = 1. From
23], the dual f*(z) of the weakly bent function f(z) in R, also belongs to R,,.

We need the following exponential sums, which are well known.

Lemma 2. [15] Let ny be the quadratic character of Fy. Then (i) ZaeJF; no(a) = 0; (i)
2 *
Zaelﬁ‘; WO(G)CS = \/F; (”Z) ZaeIE‘p C;l;m = UO(b)\/Ff fOT any be Fp-

Some well known results on the Galois group of the cyclotomic field Q((,) are used
in our proofs, where Q denotes the rational field. The Galois group of Q((,) over Q is
{oa : @ € GF(p)*}, where the automorphism o, of Q((p) is defined by 04(¢,) = (7. It
is clear that o,(¢%) = (2 for any a € F; and b € F,. The cyclotomic filed Q(¢,) has a
unique quadratic subfield Q(y/p*).
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By Lemma 2 (ii), we have /p* = >, . 10(b)¢0, which implies that

oa(VD*) = Z no(b)CS” = 1o(a) Z no(ab)C;“’ = no(a)Vp*. (3)
beFs beFs
2.2 A general construction of linear codes from functions

Let g(z) be a p-ary function such that g(0) = 0 and g(x) # w - = for any w € FF. A
general construction of linear codes from ¢ is given by

Cg = {can = (ag(®) = A 2)serm\joy ¢ €Fp, A € Fr}. (4)

It is well known that this construction can provide many interesting linear codes [3, 9, 12,
17, 18, 27]. With the automorphism of the cyclotomic field Q((,), the Hamming weights
of the codewords of C, can be computed as follows.

Lemma 3. [17] Let C, be the linear code defined by (4). Then C, is a [p* — 1,k + 1] code
and the Hamming weight of ¢, x 15 given by

0, ifa=0,A\=0;
wt(capn) = PP =P, 1 if a =0, A#0;
P = = D er, 0u(0a(Xy (@), ifa € By, A€ F}.

2.3 Exponential sums related to weakly regular bent functions

We now give some exponential sums related to weakly regular bent functions, which play
a key role in constructing minimal linear codes with Wy /Wmax < (p — 1)/p. We denote
SQ and NSQ) by the set of all squares and nonsquares in F,, respectively.

Lemma 4. [25] Let f(z) € R,, with f(O) =e/p*", and f*(x) be the dual of f(z), where
e ==*x1. Fori € F,, define

D¢ ={x€F,: f(z) =i} and Dp; = {x € F, : f*(z) = i}.

(i) If m is even, then

|Dyi|l = Dy

m— m/2 m— ;

_ i e(p = DA (= 1)ptmD2, i =0

- m— m/2 m— ; *
Pt = eng P (—1)ptm2r2, i €T

(i) If m is odd, then
pm—l 7 = 0;

IDpil =< p™ ey, i €SQ;
pl— ey i eNSQ.
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" i=0;
m— * -1 ; .
= p 1+5770<_1)\/le 17 ? GSQ,
et — emy(—1)yF T, i €NSQ,
In what follows, a series of auxiliary results are described, which are used to prove the
minimality of linear codes presented in Section 3. For A € F; and j € F,,, we define

|Dpsi

Diyj={x€F,: f(x) =0 and Tr"(\z) = j}.

Lemma 5. Let A € F;, j € Fy and f(x) € Ry, with F0) = e/
(i) If m is even, then

Z Z Z C—yf(:p 2(Te* () —7) _ { —5(p - 1)\/?7”7 f*(A) =0;

z€Fy yeFy z€Fq f

(i) If m is odd, then

0, f*(\) =0;
Z Z Z Cyf BT OD=) — 0 g (1) DD/ Ap(mt1)/2 - e (N) € SQ;
2€F; yeFy zel, g(—=1)P=NmAD/ApmH+/2 - 2 (\) € NSQ.

Proof. The proof is similar to that of Lemma 10 in [23] and is omitted

From Lemma 5, and Lemmas 9 and 11 in [23], we have the following results

Lemma 6. For A € F; and f(x) € Ry, with F0) = e/
(i) If m is even, then

|Dg ol = { P2 elp — g2 (=1)pm D2, fr(A) = 0;
" /

m—27 *(>\) # 07
and
m—2 * )\ :O
‘wa:{p R . f*( ) =0,
” pm T ey (=1)pm T (N #0;
for j € F,.
(i) If m is odd, then
P, fr(A) =0;
Dol = 4 p™% +e(p— 1)(=1)P-DmaDApm=3)/2 1 f+(X) € 5Q;
pm—2 . €(p - 1)(_1)(p—1)(m+1)/4p(m—3)/2, f*(>\) c NSQ;
and
P fr(A) =0;
Dyl =4 pm 2 —e(—=1)p-DimaDapm=3)/2 = f=()) € SQ;
P2 ()N AN/ p(3) € NSQ;
Jor j € F,.
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Remark 7. Evaluating the complete weight enumerator of a given linear code is not an
easy task in general. Notice that Lemma 6 can be used to determine the complete weight
enumerators of some linear codes presented in [23].

For a subset D of F,, the character sum (D) of D with respect to A € [F; is defined

Tr (Ax
by Xa(D) = Y oep Gt .

L}emma 8. Let A € F and f(x) € Ry, with f(0) = e/p™". Let Dyo = {z € Fy: f(z) =
0.

(i) If m is even, then

m/2 m—2)/2 * .
) e (=D (p = p™mA2) fH(N) = 0;
o) = { e PO () £0

(ii) If m is odd, then
0, f*(\) =0;

X)\(Df,()) = 6(_1)(p—1)(m+1)/4p(m—1)/27 f*<)\) € SQ:
—g(—=1)=DnAD/Apm=D/2 = £x(X) € NSQ.

Proof. By the definition of xx(Dy), we have

p—1
Xa(Dypo) =D O =N "Dy Sl
) =0
The assertion then follows from the fact that Z?;é ¢J =0 and Lemma 6. O

3 Minimal linear codes violating the Ashikhmin-Barg’s condi-
tion from weakly regular bent functions

In this section, we present two families of p-ary minimal linear codes violating the Ashikhmin-
Barg’s condition with a generalization of our construction in [28, Theorem 3.1]. We begin
with a lemma about the Walsh transform of a function g(x,y) defined over F; x I,

Lemma 9. Let U be a subset of F5. For (x,y) € Fy x Fl, define g(x,y) = ¢(x) -y, where
¢(x) is a mapping from 5 to ) such that ¢(x) is an injection from U to ) \ {0} and
P(x) = 0 for any x € F5 \ U. For any (M, A2) € Fy x ),

P> M, if A =0;

R z€F\U
g(Ai, Ag) = PG if A, € Tmg \ {0}
O, Zf /\2 ¢ Ime,

where Im¢ denotes the image of ¢(x).
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Proof. By the definition of Walsh transform, we have

)\1’ )\2 Z Z C¢ Y—A1-T—A2y __ Z C];)\l-x Z CI(;¢(I)7)\2).y

z€lF} yelF, z€F} y€F},
po Y M, if Ay € Imgy
= z€H~1(A2)
0, if Ao ¢ Imo.

The desired results follow from the assumption that ¢(x) is an injection from U to IF} \ {0}
and ¢(z) = 0 for any x € F; \ U. O

Now we are going to give a further characterization of the minimality linear code
defined in (1).

Theorem 10. Let k = s+t be a positive integer, where s and t are two positive integers.
Let U be a subset of Fy with 0 € U. Let g(x,y) = ¢(x) -y, where ¢(x) is a mapping
from T to FL such that ¢(x) is an injection from U to F, \ {0} and ¢(x) = O for any
v € F5\ U. If the set U satisfies the following three conditions:

(i)p—1<|Ul<(p—1)p"",

(it) {z € U | M\ -x # 0} > 2 for any A € F} \ {0},

(iii) maxy, eps\(oy {2 € U | A\ -w =i} < (p—1)p°? for any i € Fy,
then the code Cy defined in (1) is a minimal linear code with Wyin/Wmax < (p — 1)/p.
Moreover, the Hamming weights of the codewords of Cy are given in Table 1.

Table 1: The Hamming weights of Cyy in Theorem 10

Weight w No.of codewords A,
0 1
P p - DU p—1
[ A S D FZ\U G ), A€ Fp\ {0} (" =D -1)
zely
PP - - 1) (p=D(U[+p—Dp*!
P —p! PP =14+p(p = U =D(p—1)
A A - DU -D*—p*)

Proof. The minimality of Cy is proved by using the similar argument given in the proof
of [28, Lemma 3.1 and Theorem 3.1 |.

We now compute the Hamming weights of the codewords of Cy;. Clearly, when oo = 0
and (A1, A2) # (0,0), we have wt(cg g, 5,) = p* — p*~! from Lemma 3.

Below we consider the case of a # 0. By Lemma 3 again,

Wearns) = P — 11— = 3 o (0a(@a A, a7 ). (5)

w€elFy
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Case 1: Let a # 0 and (A1, A2) = (0,0). It is clear that (o™ 'A;,a"'Ay) = (0,0). It
follows from Lemma 9 and (5) that

Wt(Ca00) =0 ="' = (p—Dp' ' (»* — |U|) =p' ' (p— 1)|U|.

Case 2: Let a # 0, A\; # 0 and Ay = 0. It is clear that a='\; # 0 and a~'\y = 0. It
follows from Lemma 9 and (5) that

Wt(Ca,,\l,o) :pk _pk 1 t 1 Z Uw Z C—Mm

wely z€Fs\U

Case 3: Let @ # 0 and o™ ')Ay € Im¢ \ {0}. By Lemma 9 and (5), we have

wt(Can,) = P =P == Z 0u(0a(G(a™ A, a7 N)))
wE]F*
w 71
:pk_pkl tlzC At >\2
wEF*

Note that ¢(r) is a mapping from F} to I} such that ¢(z) is an injection from U to
F2\ {0}.

Subcase 3.1: Let ¢~!(a™tAy) = 0. Then wt(can,,) = p* —p* 1 —p~1(p — 1) for any
A € FZ

Subcase 3.2: Let ¢~ ' (' Az) # 0. For a fixed ¢~ ' (o' \z) € F5 \ {0}, there exist p*~*
elements \; € F? such that A;-¢~' (o~ A;) = 0 and (p—1)p*~" elements \; € F such that
Ao Hat\) £ 0. IE A - ¢ (et A) = 0, then wt(can, n,) = ¥ — PPt —p = (p —1).
If Ap - ¢ Ha™tAg) # 0, then wt(can, 0,) = pF —p" 1 +pi~!

Case 4: Let a # 0 and a~ ')y ¢ Img. It follows from Lemma 9 that gla™!A;, a7t )\y) =
0, which implies that wt(ca.a,.z,) = p* — pF L.

Let wy = p'~'(p — 1)|U| and wy = p¥ — p*~1. Tt is easily verified that

Wmax o W2 ps p

wmin<ﬂ_ﬂ<p_1

since |U] < (p — 1)p* L. O

Remark 11. When [U| < (p—1)p°~2, it is easy to see that the condition maxy, eps\ 0y {7 €
Ul -z=1} < (p—1)p*? always holds for any i € F,. Hence, the sufficient conditions
for Cyy to be minimal in Theorem 10 generalizes the results of [28, Theorem 3.1]. What’s

more, with the increase of the cardinality of the set U, it is helpful to improve the minimum
distance of Cyy defined by (1).

Remark 12. From Table 1, the parameters of Cy; are closely related to the property of the
set U. It is important to find a subset of [, suitable for constructing of minimal linear
codes in Theorem 10.

In what follows, we will use Theorem 10 to construct new minimal linear codes with
Winin/Wimax < (p — 1)/p from weakly regular bent functions.

Sequences and Their Applications (SETA) 2020 8
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Let U = Dyg = {z € F, : f(z) = 0}, where f(z) € R, with f(0) = ey/p7". We
consider p-ary function g(x,y) defined over Fym X Fym by g(x,y) = Tr]"(¢(z)y), where
(z,y) € Fym xFym, ¢(z) is a mapping from F,m to F,m such that ¢(x) is an injection from
U to Iy and ¢(z) = 0 for any = € Fpm \ U. Define a linear code by

Cu = {Capne = (ag(z,y) = Tr{" (Miz) — Tr}*(A2y)) @ g)eFym xF,m\{(0,0)} *
acF, A\ €Fpm, Ao € Fym}. (6)
Theorem 13. Let m be an even positive integer with m > 4, and let f(x) € R,, with
f(0) = ey/p*". Define U = Dyy = {x € F, : f(x) = 0}. Then Cy defined by (6) is a

[p?™—1,2m+1] minimal linear code with W /Wmax < (p—1)/p and its weight distribution
is listed in Table 2, where A = engl/z(—l)p(m_m/?

Table 2: The weight distribution of Cyy in Theorem 13

Weight w No.of codewords A,
0 1
P -1D)E™ "+ (p-1)A) p—1
P =p T 4 (p— 1) A - '+(-1)A-1)
pr=p T = (p—1)pm A (p—1D°(p" ' -4
pm —p =" (p— 1) (p—Dp™ '™ +p-1DA+p—1)
pm —prm ! Pt =14p"p" —p" = (p-1DA-1)(p—-1)
pm —p 4 pm ! p-—DE™ ' +@-DA-1(" -p" ")

Proof. To investigate the minimality of Cy, it is sufficient to show that the set U satisfies
three conditions of Theorem 10. It follows from Lemmas 4 and 6 that the set U satisfies
Conditions (i), (ii) and (iii) of Theorem 10.

Note that > g Eﬁlﬂ(_hw) = 0 for any \; € Fyn. Since f(z) € Ry, f*(=A\1) =
f*(A1) for any A\ € IiF;jm. From Lemma 8 (i), we have

_am/2 . (m—2)/2 * .
S o eny ' (=1)(p—1)p . [*(A\) =0;
C T 1 (>\1 ) — _X)\<‘Df,0) = m _ .

IG]Fpm\U . 8770 /2(_1)p(m 2)/27 f ()\) 0

By Table 1, for a # 0, Ay € . and Ay = 0,
Wt(ca,)\l,O) _ p2m o p2m—1 _ pm—l Z Uw( Z Cp—)\lm)
wEF; IGFpm\U
_ p2m _p2m—l + (p o 1)2pm—15ngl/2(_1)p(m—2)/2’ f*(/\) — 0’
- m m— m— m/2 m— *
PP — pP L — (p — L leny (= 1)pm D2 fH(A) £,

By Lemma 4 (i), the number of codewords ¢, », , with the Hamming weight p*™ —
PP (p= 1) e A (= 1)pm D2 (resp. pm—pPn = (p—1)pmteng A (—1)pm /)

N

equal to (p—1)(p"™ " +(p—D)eng > (= 1)pm=D2=1) (resp. (p—1)2(p™ ' —eny*(~1)p"=2/2)).
Then the desired results follow from Theorem 10. O

Sequences and Their Applications (SETA) 2020 9
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Example 14. Let p = 3, m = 4 and f(z) = Tr}(£z?), where £ is a generator of F%,.
The sign ¢ of the Walsh transform of f(z) is equal to 1. Then Cy is a minimal ternary
code with parameters [6560,9,1782] and its weight enumerator is 1 + 221782 4 9624212 +
189024320 1417424 4 345624491 + 6424998 which is verified by Magma. It is clear that
Winin /Winax = 1782/4698 < 2/3.

Example 15. Let p = 3, m = 4 and f(z) = Tr{(z + 22). The sign € of the Walsh
transform of f(x) is equal to —1. Then Cy is a minimal ternary code with parameters
(6560,9,1134] and its weight enumerator is 1+ 2213 4 4021950 4124221320 4 161182437 +
216024101 4+12024536 which is verified by Magma. It is clear that wyin /Wmax = 1134/4536 <
2/3.

Theorem 16. Let m be an odd positive integer with m > 3, and let f(x) € R, with
f(0) = ey/p*™. Define U = Dyy = {x € F, : f(x) = 0}. Then Cy defined by (6) is a
[p?™ =1, 2m+1] minimal linear code with Wy /Wmax < (p—1)/p and its weight distribution

is listed in Table 3, where B = en(()m+1)/2(—1)p(m_1)/2.

Table 3: The weight distribution of Cyy in Theorem 16

Weight w No.of codewords A,
0 1

" (p—1) p—1
pr—pt+ (p-1p'B )
P —p T — (p— 1" 'B e (pmt - B)

P —p T = (p— 1) (p—Dp" (" +p—1)
p —pm P14 (p- D" —14pm " —p T — 1))
= p ! (P=D" - DE"—p™)

Proof. From Lemma 8 (ii) and Lemma 4 (ii), the proof is similar to that of Theorem 13
and we omit it here. ]

Example 17. Let p = 3, m = 3 and f(z) = Tr’(£2?), where € is a generator of F%;. The
sign € of the Walsh transform of f(z) is equal to —1. Then Cy is a minimal ternary code
with parameters [728,7,162] and its weight enumerator is 1 + 22162 4 122132 4 1982468 +
16622486 + 2882495 + 242540 which is verified by Magma. It is clear that Wi, /Wmax =
162/540 < 2/3.

Example 18. Let p = 5, m = 3 and f(x) = Tr}(2?). The sign ¢ of the Walsh transform
of f(x) is equal to 1. Then Cy is a minimal code with parameters [15624,7,2500] and its
weight enumerator is 1+422°%04+1602120°0 42900212490 4 65220212°%0 19600212525 4240 213000
which is verified by Magma. It is clear that wy, /wmax = 2500/13000 < 4/5.

Remark 19. It should be noted that the weight distributions of minimal linear codes with
Wnin/Wimax < (p—1)/p presented in this paper are new by comparing with known minimal
linear codes with wWyin/Wmax < (p — 1)/p in the literatures [2, 3, 5, 9, 12, 19, 27, 28].

Sequences and Their Applications (SETA) 2020 10
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