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Abstract. Maximum distance separable codes with linear complementary duals

(LCD MDS codes) are very important in coding theory and practice. Thus it is

interesting to construct LCD MDS codes. In this paper, we give check matrices of

twisted generalized Reed-Solomon codes and construct three classes of new LCD

MDS codes from twisted generalized Reed-Solomon codes. Moreover, LCD NMDS

codes are also presented.

1. Introduction

A linear complementary dual code (LCD) is a linear code C whose dual code C⊥

satisfies C ∩ C⊥ = {0}. Massey demonstrated that there exists asymptotically good

LCD codes and provided an optimum linear coding solution for the two-user binary

adder channel [8]. Afterwards, Yang and Massey [20] gave a necessary and sufficient

condition for a cyclic code to have a complementary dual. In [19], Li et al. showed

some families of LCD cyclic code over finite field and gave their parameters. Bringer

et al. [17] and Carlet and Guilley [4] introduced and analyzed a masking scheme,

called orthogonal direct sum masking (ODSM), to protect against side-channel at-

tacks and fault injection attacks (FIAs). The complementary-dual property plays

a decisive role in the working performance of ODSM, because it enables us to use

orthogonal projection to recover information of an LCD code to against FIAs. It

is well known that LCD codes have been widely used in communications systems,

consumer electronics, cryptography and so on. Moreover, some other classes of LCD

codes were explicitly considered in [11]-[18].

It was shown that LCD codes with relatively large minimum distance are desirable.

Maximum distance separable (MDS) codes are optimal in the sence that no code of

length n with M codewords has a larger minimum distance than an MDS code with

length n and size M . The construction of LCD MDS codes is thus becoming a hot

research issue in coding theory. Recently, Jin constructed several classes of LCD MDS

codes by using two classes of generalized Reed-Solomon codes [5]. Then, Chen and

Liu constructed some new LCD MDS codes by a different approach from generalized
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Reed-Solomon codes [7]. In [17], Carlet et al. showed LCD codes are equivalent to an

arbitrary linear code for q > 3 in the Euclidean case. In [1], Beelen et al. presented

twisted Reed-Solomon codes and gave a efficient and necessary condition for twisted

Reed-Solomon codes to be MDS. In this paper, we constructed several classes of LCD

MDS codes from twisted Reed-Solomon codes. Since twisted Reed-Solomon codes is

different from Reed-Solomon codes, then LCD MDS codes we constructed in this

paper is different from the known. Moreover, NMDS codes were introduced in 1995

in [21] by weakening the definition of MDS codes. If a code has one singleton defect

from being an MDS code, then it is called almost MDS (AMDS). An AMDS code

is an NMDS code if the dual code is also an AMDS code. NMDS codes also have

application in secret sharing scheme [22, 23]. In this paper, we also present several

classes of NMDS LCD codes from twisted generalized Reed-Solomon codes.

The paper is organized as follows. In section 2, some basic notations and results

about twisted generalized Reed-Solomon codes are introduced. In Section 3, three

new constructions of MDS or NMDS LCD codes are provided. In Section 4, We

conclude the paper.

2. Preliminaries

In this section, we review some basic notations and some basic knowledge. In

particular, we introduce MDS codes and NMDS codes from twisted generalized Reed-

Solomon codes and show their check matrices.

2.1. TGRS codes. Let Fq[x] be a polynomial ring over a field field Fq of order q. We

denote the rank of a matric M over Fq by R(M). We abbreviate generalized Reed-

Solomon codes, twisted Reed-Solomon codes, and twisted generalized Reed-Solomon

codes as RS codes, GRS codes, and TGRS codes, respectively.

Now, let us recall some definitions of TRS codes in [1].

Definition 1. Let V be a k-dimensional Fq-linear subspace of Fq[x]. Let α1, . . . , αn
be distinct elements in Fq and α = (α1, . . . , αn). Let v1, . . . , vn be nonzero elements

in Fq and v = (v1, . . . , vn). We call α1, . . . , αn the evaluation points. Define the

evaluation map of α on V by

evα : V −→ Fnq , f(x) 7−→ evα(f(x)) = (f(α1), . . . , f(αn));

define the evaluation map of α and v by

evα,v : V −→ Fnq , f(x) 7−→ evα(f(x)) = (v1f(α1), . . . , vnf(αn)).

Definition 2. Let k, t, and h be positive integers with 0 ≤ h < k ≤ q and η ∈ F∗q =

Fq\{0}. Define the set of (k, t, h, η)-twisted polynomials as

Vk,t,h,η = {f(x) =
k−1∑
i=0

aix
i + ηahx

k−1+t : ai ∈ Fq, 0 ≤ i ≤ k − 1},
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which is a k-dimensional Fq-linear subspace. We call h the hook and t the twist.

In this paper, we always assume that h = 0 and t = 1, so

Vk,1,0,η = {f(x) =
k−1∑
i=0

aix
i + ηa0x

k : ai ∈ Fq, 0 ≤ i ≤ k − 1}.

For convenience, set k ≤ n− k.

Definition 3. Let α1, . . . , αn be distinct elements in Fq and α = (α1, . . . , αn). Let

v1, . . . , vn be nonzero elements in Fq and v = (v1, . . . , vn). Let Vk,1,0,η be in Definition

2. The TRS code of length n and dimension k is defined as

Ck(α, 1, η) = evα(Vk,1,0,η) ⊆ Fnq .

The TGRS code of length n and dimension k is defined as

Ck(α, v, η) = evα,v(Vk,1,0,η) ⊆ Fnq .

Remark 1. Compared with GRS codes, TGRS codes is different. See more details

in [1].

In fact, if v = (1, . . . , 1) = 1, then Ck(α, v, η) = Ck(α, 1, η), i.e., the TGRS code is

the TRS code.

Let Gk is a generator matrix of Ck(α, v, η), then

Gk =


v1(1 + ηαk1) v2(1 + ηαk2) . . . vn(1 + ηαkn)

v1α1 v2α2 . . . vnαn
...

...
...

v1α
k−1
1 v2α

k−1
2 . . . vnα

k−1
n

 . (2.1)

Definition 4. A [n, k, d] linear code C over Fq is MDS if d = n − k + 1. A [n, k, d]

linear code C over Fq is almost MDS if d = n− k. A [n, k, d] linear code C over Fq is

NMDS if C and the dual of C are almost MDS codes, respectively.

Now, we present the sufficient and necessary condition that TGRS code is an MDS

or NMDS code (The part of MDS codes are covered in [1]).

Lemma 1. Let α1, . . . , αn are distinct elements in Fq, α = (α1, . . . , αn), v = (v1, . . . , vn) ∈
(F∗q)n, and η ∈ F∗q. Let

Sk = {(−1)k
∏
i∈I

α−1i : I ⊂ {1, . . . , n}, |I| = k},

then we have the following:

(1) the TGRS code Ck(α, v, η) is MDS if and only if η ∈ F∗q \ Sk;

(2) the TGRS code Ck(α, v, η) is NMDS if and only if η ∈ Sk.
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Proof. (1) For the completeness, we provide another method to prove it.

Ck(α, v, η) is MDS ⇐⇒ any k columns of Gk are linear independently.

⇐⇒

∣∣∣∣∣∣∣∣∣∣
vi1(1 + ηαki1) vi2(1 + ηαki2) . . . vik(1 + ηαkik)

vi1αi1 vi2αi2 . . . vikαik
...

...
...

vi1α
k−1
i1

vi2α
k−1
i2

. . . vikα
k−1
ik

∣∣∣∣∣∣∣∣∣∣
6= 0,

where {i1, i2, . . . , ik} is an arbitrary k-subset of {1, 2, . . . , n}. Then the result follows

immediately by linear algebra.

(2) “ ⇐= ” By linear algebra, we know that any k − 1 columns of Gk are linear

independently over Fq. If η ∈ Sk, then there exists k columns of Gk are linear

dependently over Fq. Thus, the parameter of Ck(α, v, η)⊥ is [n, n − k, k]. Similarly,

since any n− k − 1 columns of Hk are linear independently over Fq and Ck(α, v, η)⊥

is not MDS, we obtain the parameter of Ck(α, v, η) is [n, k, n− k]. Thus, Ck(α, v, η)

is NMDS.

“ =⇒ ” Conversely, if Ck(α, v, η) is NMDS, then the parameter of Ck(α, v, η)⊥ is

[n, n − k, k], which implies that there exists k columns of Gk is linear dependently

over Fq, i.e. η ∈ Sk. �

Remark 2. It should be noted that F∗q \ Sk in Lemma 1 can always be a nonempty

set. In particular, if q − 1 > n!
k!(n−k)! , or {α1, α2, . . . , αn} ⊆ H, where H is a proper

subgroup of F∗q, then F∗q \ Sk is a nonempty set. Or rather, there are many choices of

{α1, α2, . . . , αn} such that Sk is a proper subset of F∗q.

Let Gk be the generator matrix of Ck(α, v, η) as (2.1). We shall find the check

matrix of of Ck(α, v, η).

Theorem 1. For convenience, set a =
∏n

i=1 αi 6= 0. Then

Hn−k =


u1
v1

u2
v2

. . . un
vn

u1
v1
α1

u2
v2
α2 . . . un

vn
αn

...
...

...
u1
v1
αn−k−21

u2
v2
αn−k−22 . . . uu

vn
αn−k−21

u1
v1

(αn−k−11 − ηa
α1

) u2
v2

(αn−k−12 − ηa
α2

) . . . un
vn

(αn−k−1n − ηa
αn

)

 (2.2)

is the check matrix of Ck(α, v, η), where ui =
∏n

j=1,j 6=i(αi − αj)−1, 1 ≤ i ≤ n.

Proof. To calculate the check matrix of Ck(α, v, η), we investigate the check matrix

of Ck(α, 1, η).

There is a n× n matrix over Fq:

G =


1 1 . . . 1

α1 α2 . . . αn
...

...
...

αn−11 αn−12 . . . αn−1n

 .
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(1) Consider the system of equations over Fq: G(u1, u2, . . . , un)T = (0, . . . , 0, 1)T .

Then there is an unique solution: (u1, . . . , un)T , where ui =
∏n

j=1,j 6=i(αi −
αj)
−1, 1 ≤ i ≤ n.

(2) Consider the system of equations over Fq: G(w1, w2, . . . , wn)T = (1, 0, . . . , 0)T .

Then there is an unique solution: (w1, . . . , wn)T , where wi =
∏n

j=1,j 6=i(αi −
αj)
−1αj = ui

∏n
j=1,j 6=i αj, 1 ≤ i ≤ n.

(3) Let

H =


w1 u1α

n−2
1 · · · u1α

n−k−1
1 · · · u1

w2 u2α
n−2
1 · · · u2α

n−k−1
1 · · · u2

...
...

...
...

wn unα
n−2
n · · · unα

n−k−1
n · · · un

 .

Then

GH = L =


1 0 · · · 0 · · · 0
...

. . .
...

...

0 ∗ · · · 1 · · · 0
...

...
...

. . .
...

0 ∗ · · · ∗ · · · 1


is an lower triangular matrix over Fq and its all elements of main diagonal are

equal to 1, where ∗ is not necessarily 0. This is a little similar to RS codes (

for details see RS codes in [8]) but more difficult.

(4) Hence

P1GHP2 = L′ =


1 ∗ · · · 0 · · · 0
...

. . .
...

...

0 ∗ · · · 1 · · · 0
...

...
...

. . .
...

0 ∗ · · · ∗ · · · 1

 ,

where P1 = P (1, (k+ 1)(η)) is an elementary matrix, that 1th row is replaced

by sum of η times k+ 1th row and 1th row, and P2 = P (1, (k+ 1)(−η)) is an

elementary matrix, that k + 1th column is replaced by sum of −η times 1th

column and k + 1th column.

For convenience, let a =
∏n

i=1 αi 6= 0 and

H ′n−k =


u1 u2 . . . un

u1α1 u2α2 . . . unαn
...

...
...

u1α
n−k−2
1 u2α

n−k−2
2 . . . u1α

n−k−2
1

u1(α
n−k−1
1 − η a

α1
) u2(α

n−k−1
2 − η a

α2
) . . . un(αn−k−1n − η a

αn
)

 .

Then G′kH
′
n−k

T = 0, where G′k = Gk with vi = 1, 1 ≤ i ≤ n.

Let Hn−k be the matrix as (2.2). Then GkH
T
n−k = 0 and it is the check

matrix of Ck(α, v, n).
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By the discussion above, the result follows immediately. �

2.2. Hull of TGRS codes. Given two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . ,

yn) ∈ Fnq , the Euclidean inner product is defined by 〈x,y〉E =
n∑
i=1

xiyi. For a linear

code C of length n over Fq, the code

C⊥ = {x ∈ Fnq |〈x,y〉E = 0, for all y ∈ C}

is referred to as its Euclidean dual code. Define the Hull of C as

Hull(C) = C
⋂
C⊥.

If Hull(C) = {0}, C is called an Euclidean LCD code: if Hull(C) = C and dim(C) =

dim(C>), C is called a self-dual code; if Hull(C) = C, C is call a self-orthogonal code.

To investigate LCD TGRS codes, we first study the hull of TGRS codes with the

same notations above.

Lemma 2. dim(Hull(Ck(α, v, η)) = n−R

(
Gk

Hn−k

)
.

Proof. Firstly, by the definition, we obtain

Hull(Ck(α, v, η) = {µG | µGk = κHn−k, µ ∈ Fkq , κ ∈ Fn−kq }.

Then we have

dim(Hull(Ck(α, v, η))) = dim{µ |
(
µ −κ

)( Gk

Hn−k

)
= 0, µ ∈ Fkq , κ ∈ Fn−kq }

= dim{
(
µ −κ

)
|
(
µ −κ

)( Gk

Hn−k

)
= 0, µ ∈ Fkq , κ ∈ Fn−kq }

= n−R

(
Gk

Hn−k

)
,

where the second equality holds because the rank of rows of Hn−k is full. �

Next, we consider LCD codes Ck(α, v, η) which satisfies dim(Hull(Ck(α, v, η)) = 0,

i.e. R

(
Gk

Hn−k

)
= n.

Considering
(
GT
k HT

n−k

)
, multiplying vi to the ith row for 1 ≤ i ≤ n, we then

obtain a matrix D, where

D =


v21(1 + ηαk1) v21α1 . . . v21α

k−1
1 u1 u1α1 . . . u1α

n−k−2
1 u1(α

n−k−1
1 − η a

α1
)

v22(1 + ηαk1) v22α2 . . . v22α
k−1
2 u2 u2α2 . . . u2α

n−k−2
2 u2(α

n−k−1
2 − η a

α2
)

...
...

...
...

...
...

...

v2n(1 + ηαkn) v2nαn . . . v2nα
k−1
n un unαn . . . unα

n−k−2
n un(α

n−k−1
n − η a

αn
)

 .

Next, we will give some construction of LCD MDS codes by choosing α, v such

that R(D) = n.
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3. LCD MDS codes

In this section, we always assume that Ck(α, v, η) is a TGRS code, and Sk is defined

as in (2.2). Then it is a MDS or NMDS code. Now we shall construct three classes

of LCD MDS codes or LCD NMDS codes from TGRS codes. We always assume q is

an odd prime power.

3.1. Construction I. If n|q − 1, let λ ∈ F∗q, then there is an element ε ∈ F∗q such

that εn = λ. Let w ∈ Fq with ord(w) = n. Then there is an irreducible factorization

over Fq:

m(x) = xn − λ =
n∏
i=1

(x− εwi).

Set αi = εwi−1, 1 ≤ i ≤ n. Consequently, ui =
∏n

j=1,j 6=i(αi − αj)−1 = m′(αi)
−1 =

1
nλ
αi, 1 ≤ i ≤ n. Let a =

∏n
i=1 αi = (−1)n+1λ. To construct LCD codes, we need the

following statement.

Lemma 3. If n = 2k, then 1 + η2a = 1− η2λ 6= 0.

Proof. Suppose that 1− η2λ = 0, then x2k − λ = x2k − η−2 = (xk + η−1)(xk − η−1).
Consequently, (−1)k

∏
i∈I αi = η−1 or −η−1 for some I ⊆ {1, 2, . . . , n} with |I| = k,

which is a contraction with the choice of η. �

Let vi ∈ {1,−1} for k ≤ i ≤ n, vi ∈ Fq \ {0,−1, 1} for 1 ≤ i ≤ k − 1. Then we

have

D =



v21(1 + ηαk1) v21α1 . . . v21α
k−1
1

1
nλ
α1 . . . 1

nλ
αn−k−1
1

1
nλ

(αn−k1 − ηa)
...

...
...

...
...

...

v2k−1(1 + ηαkk−1) v2k−1αk−1 . . . v2k−1α
k−1
k−1

1
nλ
αk−1 . . . 1

nλ
αn−k−1
k−1

1
nλ

(αn−kk−1 − ηa)

1 + ηαkk αk . . . αk−1
k

1
nλ
αk . . . 1

nλ
αn−k−1
k

1
nλ

(αn−kk − ηa)
...

...
...

...
...

...

1 + ηαkn αn . . . αk−1
n

1
nλ
αn . . . 1

nλ
αn−k−1
n

1
nλ

(αn−kn − ηa)

 .

If k ≤ n−k−1, by elementary transformation of matrix D, we obtain the following,

D′ =



(v21 − 1)α1 . . . (v21 − 1)αk−1
1 s1 + 1 α1 . . . αn−k−1

1 αn−k1 − ηa
...

...
...

...
...

...

(v2k−1 − 1)αk−1 . . . (v2k−1 − 1)αk−1
k−1 sk−1 + 1 αk−1 . . . αn−k−1

k−1 αn−kk−1 − ηa
0 . . . 0 1 αk . . . αn−k−1

k αn−kk − ηa
...

...
...

...
...

...

0 . . . 0 1 αn . . . αn−k−1
n αn−kn − ηa

 ,

where si = (v2i − 1)(1 + ηαki ) for 1 ≤ i ≤ k − 1.
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If k = n− k, then

D′′ =



(v21 − 1)α1 . . . (v21 − 1)αk−1
1 s1 + 1 + η2a α1 . . . αk−1

1 αk1 − ηa
...

...
...

...
...

(v2k−1 − 1)αk−1 . . . (v2k−1 − 1)αk−1
k−1 sk−1 + 1 + η2a αk−1 . . . αk−1

k−1 αkk−1 − ηa
0 . . . 0 1 + η2a αk . . . αk−1

k αkk − ηa
...

...
...

...
...

...

0 . . . 0 1 + η2a αn . . . αk−1
n αkn − ηa

 .

Using lemma 3, and by noting that the matrices D′ and D′′ are upper triangular

block matrix, respectively. Then by some properties of Vandermonde determinant, it

is not difficult to find D′ and D′′ are nonsingular. Then we have the following results.

Theorem 2. Let n|q − 1 with q a prime power and assume m(x) = xn − λ =∏n
i=1(x − αi) ∈ Fq[x] with α1, . . . , αn, λ ∈ Fq. Let vi ∈ {1,−1} for k ≤ i ≤ n and

vi ∈ Fq \ {−1, 0, 1} for 1 ≤ i ≤ k − 1. Then

Ck(α, v, η) = {(v1f(α1), . . . , vnf(αn)) | f(x) =
k−1∑
i=1

fix
i + ηf0x

k ∈ Fq[x]}

is an LCD MDS code, where η ∈ F∗q\Sk.

Proof. Since gcd(m(x),m′(x)) = 1 and by the discussion above, we obtain R(D) = n.

Consequently, LCD MDS is obvious. �

Remark 3. In particular, if η ∈ Sk in Theorem 2, then Ck(α, v, η) is an LCD NMDS

code by Lemma 1.

3.2. Construction II. Let m(x) = xn + bx + λ ∈ Fq1 [x] with Fq1 a subfield of Fq,
and assume that Fq is the splitting field of m(x) over Fq1 . Assume that α1, α2, . . . , αn
are all roots of m(x) in Fq, i.e.,

m(x) = xn + bx+ λ =
n∏
i=1

(x− αi) ∈ Fq[x].

Consequently, ui =
∏n

j=1,j 6=i(αi−αj)−1 = m′(αi)
−1 = αi

b(1−n)αi−nλ . Let a =
∏n

i=1 αi =

(−1)nλ.

Let vi ∈ {1,−1} for k ≤ i ≤ n, vi ∈ Fq\{0,−1, 1} for 1 ≤ i ≤ k− 1. Then we have

D =



v21(1 + ηαk1) v21α1 . . . v21α
k−1
1

α1
s1

. . .
αn−k−1
1
s1

αn−k
1 −ηa
s1

...
...

...
...

...
...

v2k−1(1 + ηαkk−1) v2k−1αk−1 . . . v2k−1α
k−1
k−1

αk−1

sk−1
. . .

αn−k−1
k−1

sk−1

αn−k
k−1
−ηa

sk−1

1 + ηαkk αk . . . αk−1
k

αk
sk

. . .
αn−k−1
k
sk

αn−k
k
−ηa

sk
...

...
...

...
...

...

1 + ηαkn αn . . . αk−1
n

αn
sn

. . .
αn−k−1
n
sn

αn−k
n −ηa
sn


,

where si = b(1− n)αi − nλ for 1 ≤ i ≤ k − 1.
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By elementary transformation of matrix, when k ≤ n− k− 2, we obtain that D′ =

(v21 − 1)α1s1 . . . (v21 − 1)αk−1
1 s1 (v21 − 1)(1 + ηαk1)s1 − nλ α1 . . . αn−k1 − ηa

...
...

...
...

...

(v2k−1 − 1)αk−1sk−1 . . . (v2k−1 − 1)αk−1
k−1sk−1 (v21 − 1)(1 + ηαk1)sk−1 − nλ αk−1 . . . αn−kk−1 − ηa

0 . . . 0 −nλ αk . . . αn−kk − ηa
...

...
...

...
...

0 . . . 0 −nλ αn . . . αn−kn − ηa

 .

Thus, R(D) = n.

When k = n− k − 1 with n an odd integer, we obtain that D′′ =

(v21 − 1)α1s1 . . . (v21 − 1)αk−1
1 s1 (v21 − 1)(1 + ηαk1)s1 + s α1 . . . αn−k1 − ηa

...
...

...
...

...

(v2k−1 − 1)αk−1sk−1 . . . (v2k−1 − 1)αk−1
k−1sk−1 (v2k−1 − 1)(1 + ηαkk−1)sk−1 + s αk−1 . . . αn−kk−1 − ηa

0 . . . 0 s αk . . . αn−kk − ηa
...

...
...

...
...

0 . . . 0 s αn . . . αn−kn − ηa

 ,

where s = η2ba(1− n)− nλ. Choose η2 6= a−1b−1(1− n)−1nλ. thus, R(D) = n.

Theorem 3. Let η ∈ F∗q \Sk and η2 6= a−1b−1(1−n)−1nλ. Assume that {α1, . . . , αn}
is the set of roots of a trinomial m(x), which is given by m(x) = xn + bx + λ for

some b, λ ∈ F∗q such that αi 6= nλb−1(1 − n)−1 for 1 ≤ i ≤ n. Let vi ∈ {1,−1} for

k ≤ i ≤ n, vi ∈ Fq\{0,−1, 1} for 1 ≤ i ≤ k − 1. Then

Ck(α, v, η) = {(v1f(α1), . . . , vnf(αn)) | f(x) =
k−1∑
i=1

fix
i + ηf0x

k ∈ Fq[x]}

is an k dimensional LCD MDS code for any k ≤ bn
2
c with n an odd integer, while for

any k ≤ bn
2
c − 1 with n an even integer.

Proof. Since m′(x) = nxn−1 + b, m(αi) = 0 and αi 6= nλb−1(1 − n)−1, we then

obtain m′(αi) 6= 0 for i = 1, 2, . . . , n. Consequently, (m(x),m′(x)) = 1. That implies

α1, α2, . . . , αn are distinct elements in Fq. By the choice of vi, i = 1, 2, . . . , n and η, we

obtain that Ck(α, v, η) is MDS code over Fq by Lemma 1. By the discussion above,

since η2 6= a−1b−1(1 − n)−1nλ, then R(D) = n. Consequently, Ck(α, v, η) is LCD.

Thus, the result follows immediately. �

Remark 4. In particular, if η ∈ Sk in Theorem 3, then Ck(α, v, η) is an LCD NMDS

code by Lemma 1.

3.3. Construction III. Let q = pm, n+1 = pe with e ≤ m and U = {α1, . . . , αn}
⋃
{0}

be an additive subgroup of Fq. Actually, U is a vector space of dimension e over Fp.
Let m(x) =

∏
u∈U (x−u)

x
, and write

∏
u∈U(x− u) = xp

e
+
∑e−1

j=0 aix
pj−1 ∈ Fq[x]. Then

m(x) =
n∏
j=1

(x− αj) = xp
e−1 +

e−1∑
j=1

aix
pj−1 + (−1)na
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with

a =
n∏
i=1

αi =
n∏

j 6=i,j=1

(αi − αj)(αi − 0).

Thus, ui =
∏n

j=1,j 6=i(αi − αj)−1 = a−1αi.

Let vi ∈ {1,−1} for k ≤ i ≤ n, vi ∈ Fq \ {0,−1, 1} for 1 ≤ i ≤ k − 1. Then we

have

D =



v21(1 + ηαk1) v21α1 . . . v21α
k−1
1 a−1α1 . . . a−1αn−k−1

1 a−1(αn−k1 − ηa)
...

...
...

...
...

...

v2k−1(1 + ηαkk−1) v2k−1αk−1 . . . v2k−1α
k−1
k−1 a−1αk−1 . . . a−1αn−k−1

k−1 a−1(αn−kk−1 − ηa)

1 + ηαkk αk . . . αk−1
k a−1αk . . . a−1αn−k−1

k a−1(αn−kk − ηa)
...

...
...

...
...

...

1 + ηαkn αn . . . αk−1
n a−1αn . . . a−1αn−k−1

n a−1(αn−kn − ηa)

 .

If k ≤ n−k−1, by elementary transformation of matrix D, we obtain the following,

D′ =



(v21 − 1)α1 . . . (v21 − 1)αk−1
1 s1 + 1 α1 . . . αn−k−1

1 αn−k1 − ηa
...

...
...

...
...

...

(v2k−1 − 1)αk−1 . . . (v2k−1 − 1)αk−1
k−1 sk−1 + 1 αk−1 . . . αn−k−1

k−1 αn−kk−1 − ηa
0 . . . 0 1 αk . . . αn−k−1

k αn−kk − ηa
...

...
...

...
...

...

0 . . . 0 1 αn . . . αn−k−1
n αn−kn − ηa

 ,

where si = (v2i − 1)(1 + ηαki ) for 1 ≤ i ≤ k − 1.

If k = n− k, then

D′′ =



(v21 − 1)α1 . . . (v21 − 1)αk−1
1 s1 + 1 + η2a α1 . . . αk−1

1 αk1 − ηa
...

...
...

...
...

(v2k−1 − 1)αk−1 . . . (v2k−1 − 1)αk−1
k−1 sk−1 + 1 + η2a αk−1 . . . αk−1

k−1 αkk−1 − ηa
0 . . . 0 1 + η2a αk . . . αk−1

k αkk − ηa
...

...
...

...
...

...

0 . . . 0 1 + η2a αn . . . αk−1
n αkn − ηa

 .

Make an assumption that η2 6= −1
a

, and by noting that the matrices D′ and D′′ are

upper triangular block matrix, respectively. Then by some properties of Vandermonde

determinant, it is not difficult to find D′ and D′′ are nonsingular. Then we have the

following results.

Theorem 4. Let q = pm, n + 1 = pe with q a prime power and e,m are integers

satisfying e ≤ m. Assume xp
e−1+

∑e−1
i=0 aix

pi =
∏n

i=1(x−αi) ∈ Fq[x] with α1, . . . , αn ∈
Fq. Let vi ∈ {1,−1} for k ≤ i ≤ n and vi ∈ Fq \ {−1, 0, 1} for 1 ≤ i ≤ k − 1. Then

Ck(α, v, η) = {(v1f(α1, . . . , vnf(αn)) | f(x) =
k−1∑
i=1

fix
i + ηf0x

k ∈ Fq[x]}

is an LCD MDS code, where η ∈ F∗q\Sk and η2 6= −1
a

.

Proof. From the discussion above, we obtain R(D) = n. Consequently, LCD MDS is

obvious. �
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Remark 5. In particular, if η ∈ Sk and η2 6= −1
a

in Theorem 4, then Ck(α, v, η) is

an LCD NMDS code by Lemma 1.

4. Conclusion and Future work

In this paper, we investigate MDS or NMDS LCD codes by TGRS codes. We give

the check matrix of TGRS codes, which plays an important role in investigating dual

codes of TGRS codes. By factorization of binomial, trinomial and linearized polyno-

mial over Fq, we choose α and v such that the matrix D is full rank. Consequently,

we obtain three classes of MDS or NMDS LCD codes. It is possible to construct more

classes MDS or NMDS LCD codes by different polynomials from TGRS codes.

A part from the problem mentioned above, there could be many other interesting

problems associated with MDS codes. A possible direction for future work is to

investigate self-dual MDS codes from TGRS codes (e.g., see [6]).
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